首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymeric nanoparticles are promising delivery platforms for various biomedical applications. One of the main challenges toward the development of therapeutic nanoparticles is the premature disassembly and release of the encapsulated drug. Among the different strategies to enhance the kinetic stability of polymeric nanoparticles, shell‐ and core‐crosslinking have been shown to provide robust character, while creating a suitable environment for encapsulation of a wide range of therapeutics, including hydrophilic, hydrophobic, metallic, and small and large biomolecules, with gating of their release as well. The versatility of shell‐ and core‐crosslinked nanoparticles is driven from the ease by which the structures of the shell‐ and core‐forming polymers and crosslinkers can be modified. In addition, postmodification with cell‐recognition moieties, grafting of antibiofouling polymers, or chemical degradation of the core to yield nanocages allow the use of these robust nanostructures as “smart” nanocarriers. The building principles of these multifunctional nanoparticles borrow analogy from the synthesis, supramolecular assembly, stabilization, and dynamic activity of the naturally driven biological nanoparticles such as proteins, lipoproteins, and viruses. In this review, the chemistry involved during the buildup from small molecules to polymers to covalently stabilized nanoscopic objects is detailed, with contrast of the strategies of the supramolecular assembly of polymer building blocks followed by intramicellar stabilization into shell‐, core‐, or core–shell‐crosslinked knedel‐like nanoparticles versus polymerization of polymers into nanoscopic molecular brushes followed by further intramolecular covalent stabilization events. The rational design of shell‐crosslinked knedel‐like nanoparticles is then elaborated for therapeutic packaging and delivery, with emphasis on the polymer chemistry aspects to accomplish the synthesis of such nanoparticulate systems. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

2.
The hydrogen bonds in films of the polyurethane and the core‐shell type polyacrylate‐polyurethane microemulsions have been studied by FTIR spectroscopy in the regions of  NH absorption and CO absorption. The effects on hydrogen bonds of the composition, the core‐shell ratio were revealed. At the same time, the relationship between the hydrogen bonds and the crosslinked structures (Type A and Type B) was discovered. The shifts of the  NH and CO stretching bands to higher frequencies and the shift of  NH bending bands to lower frequencies, with the increase of acetone CO number in the core, mean that the hydrogen bonds between the soft and hard segments, and those in the short‐range order in the hard segment phase, are broken. The dipole/dipole interaction which is supposed to exist between the acetone CO groups in the core and the urethane CO in the shell can change the hydrogen bond distribution in the shell, and at the same time, lead to hydrogen bonds between acetone CO in the core and the urethane  NH in the shell. Type A and B crosslinked structure between the core and the shell located at the interface of the core and the shell can confine the acetone CO within the crosslinking network, and Type B crosslinked structure also decreases the acetone CO numbers. These weaken the dipole/dipole interaction between the acetone CO and the urethane CO, and lead to the decrease of the effect of the acetone CO groups on the hydrogen bond distribution in the shell. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2642–2650, 1999  相似文献   

3.
Amphiphilic core–shell nanostructures containing 19F stable isotopic labels located regioselectively within the core domain were prepared by a combination of atom transfer radical polymerization (ATRP), supramolecular assembly, and condensation‐based crosslinking. Homopolymers and diblock copolymers containing 4‐fluorostyrene and methyl acrylate were prepared by ATRP, hydrolyzed, assembled into micelles, and converted into shell‐crosslinked nanoparticles (SCKs) by covalent stabilization of the acrylic acid residues in the shell. The ATRP‐based polymerizations, producing the homopolymers and diblock copolymers, were initiated by (1‐bromoethyl)benzene in the presence of CuBr metal and employed N,N,N,N,N″‐pentamethyldiethylenetriamine as the coordinating ligand for controlled polymerizations at 75–90 °C for 1–3 h. Number‐average molecular weights ranged from 2000 to 60,000 Da, and molecular weight distributions, generally less than 1.1 and 1.2, were achieved for the homopolymers and diblock copolymers, respectively. Methyl acrylate conversions as high as 70% were possible, without observable chain–chain coupling reactions or molecular weight distribution broadening, when bromoalkyl‐terminated poly(4‐fluorostyrene) was used as the macroinitiator. Poly(4‐fluorostyrene), incorporated as the second segment in the diblock copolymer synthesis, was initiated from a bromoalkyl‐terminated poly(methyl acrylate) macroinitiator. After hydrolysis of the poly(methyl acrylate) block segments, micelles were formed from the resulting amphiphilic block copolymers in aqueous solutions and were then stabilized by covalent intramicellar crosslinking throughout the poly(acrylic acid) shells to yield SCKs. The SCK nanostructures on solid substrates were visualized by atomic force microscopy and transmission electron microscopy. Dynamic light scattering was used to probe the effects of crosslinking on the resulting hydrodynamic diameters of nanoparticles in aqueous and buffered solutions. The presence of fluorine atoms in the diblock copolymers and resulting SCK nanostructures allowed for characterization by 19F NMR in addition to 1H NMR, 13C NMR, and IR spectroscopy. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4152–4166, 2001  相似文献   

4.
The preparation and characterization of macromolecular nanostructures possessing an amphiphilic core–shell morphology with a hydrophobic, fluidlike core domain with a low glass‐transition temperature are described. The nanostructures were prepared by the self‐assembly of polyisoprene‐b‐poly(acrylic acid) diblock copolymers into polymer micelles, followed by crosslinking of the hydrophilic shell layer via condensation between the acrylic acid functionalities and 2,2′‐(ethylenedioxy)bis(ethylamine), in the presence of 1‐(3′‐dimethylaminopropyl)‐3‐ethylcarbodiimide methiodide. The properties of the resulting shell‐crosslinked knedel‐like (SCK) nanoparticles were dependent on the microstructure and properties of the polyisoprene core domain. SCKs containing polyisoprene with a mixture of 3,4‐ and 1,2‐microstructures underwent little shape distortion upon adsorption from aqueous solutions onto mica or graphite. In contrast, when SCKs were composed of polyisoprene of predominantly cis‐1,4‐repeat units, the glass‐transition temperature was ?65 °C, and the nanospheres deformed to a large extent upon adsorption onto a hydrophilic substrate (mica). Adsorption onto graphite gave a less pronounced deformation, as determined by a combination of transmission electron microscopy and atomic force microscopy. Subsequent crosslinking of the core domain (in addition to the initial shell crosslinking) dramatically reduced the fluid nature and, therefore, reduced the SCK shape change. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1659–1668, 2003  相似文献   

5.
Through reversible addition‐fragmentation chain transfer (RAFT) polymerization of t‐butyl acrylate (tBA) and RAFT copolymerization of 2‐dimethylaminoethyl methacrylate (DMAEMA) with poly(ethylene glycol) methyl ether methacrylate (PEGMEMA), block‐comb copolymer of PtBA‐b‐P(PEGMEMA‐co‐DMAEMA) was prepared. After the self‐assembly of PtBA‐b‐P(PEGMEMA‐co‐DMAEMA) into core‐shell spherical micelles, P(PEGMEMA‐co‐DMAEMA) segments of the shell was crosslinked with 1,2‐bis(2‐iodoethoxy)ethane and the core of PtBA was selectively hydrolysized with trifluoroacetic acid. Thus, zwitterionic shell‐crosslinked micelles with positively charged outer shell and negatively charged inner core were obtained. Dynamic light scattering, transmission electron microscope, Zeta potential measurement, and nuclear magnetic resonance were used to confirm the formation of the zwitterionic shell‐crosslinked micelles. They showed the excellent resistance to the variation of pH value and possessed the positive values throughout the whole range of pH range even if the carboxylic groups of the micelles was much more than ammonium groups. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
Glass transition of core/shell capsules consisting of calcium carbonate whisker as a core and crosslinked polystyrene as a shell was studied by differential scanning calorimetry. The thickness of the crosslinked shell was in the range of 26–81 nm. The crosslinked shells were revealed to show higher glass transition temperatures (Tg) than the corresponding bulk values. It was revealed that a thicker shell exhibits a lower Tg than a thinner shell, and that capsules without core (hollow capsules) exhibit lower Tg's than the corresponding core/shell capsules. These results suggest that the interfacial molecular interaction plays a role in the segmental relaxation, which is responsible for the glass transition. The difference in Tg between the core/shell and hollow samples was reduced when a coupling agent, methacrylic acid 3‐(trimethoxysilyl)propyl ester, was not included. This also suggests the interfacial effect on Tg. However, the results still suggest that the enhancement of Tg for the present crosslinked shells is not only due to the interfacial effect but also to the effects of chain configuration and heterogeneous crosslink. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2475–2485, 2006  相似文献   

7.
Alkali‐ and alkali‐earth‐metal salts of dicyclopentadiene dicarboxylic acid (DCPDCA) were prepared and employed as crosslinkers for chlorine‐containing polymers such as polychloromethylstyrene (PCMS), chlorinated polypropylene (CPP), polyepichlorohydrin (PECH), and poly(vinyl chloride) (PVC). Thermally reversible covalent crosslinks (i.e.,  DCPD bridges) between polymer chains were generated through esterification between the chlorine–carbon bonds of the polymer and the carboxylic salt groups of the crosslinker. The crosslinking reactivity decreased in the following sequence: K > Na > LiDCPDCA > alkali‐earth‐metal salts of DCPDCA. In addition, PCMS and CPP had higher gelation rates than PECH and PVC. Good flowability at about 195 °C and solubility in maleimide‐containing dichlorobenzene on heating indicated that the crosslinked PCMS and CPP exhibited thermally reversible crosslinking because of dimer/monomer (cyclopentadiene) conversion of  DCPD moieties via reversible Diels–Alder cycloaddition. Samples of PECH and PVC crosslinked by the alkali salts of DCPDCA were insoluble even when heated in maleimide‐containing dichlorobenzene. However, these crosslinked polymers could be dissolved partially after the same treatment when the crosslinker was an alkali‐earth‐metal salt of DCPDCA. Thermal degradation such as dehydrochlorination of the PECH and PVC might have been responsible for uncontrolled crosslinking because these two polymers are known to be thermally unstable. The unreacted COOK, COONa, or COOLi of the crosslinkers might have initiated base‐induced dehydrochlorination when PECH and PVC were heated at high temperatures. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 818–825, 2000  相似文献   

8.
Based on hyperbranched polyglycerol (PG), a route to prepare particles with a novel topology was developed. The hydroxyls of PG were converted to trithiocarbonates, and the latter were used to mediate the surface graft polymerization of N,N‐dimethylaminoethyl acrylate. The poly(N,N‐dimethylaminoethyl acrylate) shell was crosslinked by 1,6‐dibromohexane and then parted from the core by the cleavage of trithiocarbonates with sodium borohydride. Novel particles with thiol groups located on the interface between the PG core and poly(N,N‐dimethylaminoethyl acrylate) shell were thus formed. The shell crosslinking could be performed at very high solid contents (2–4%). These polymer particles showed pH‐ and temperature‐dependent solubility. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5458–5464, 2005  相似文献   

9.
Poly(acrylamide) grafted from solid polymer particles provides a simple solution for extremely selective removal of mercuric ions from aqueous solutions. The grafting of polyacrylamide has been performed, in high yields (164%), by redox initiation from iminoacetic acid groups created on crosslinked spherical beads (210–420 μm) of glycidyl methacrylate/methyl methacrylate/ethylene glycol dimethacrylate terpolymer. In the grafting, homopolymer formation has been reduced greatly (22%) by the treatment of the bead polymer with ceric ammonium nitrate before the addition of acrylamide monomer. The mobility of the graft chains provides nearly homogeneous reaction conditions and rapid mercury binding ability, as for low molecular weight amides [mercury sorption by a 0.105‐g polymer sample from 105 mL of a 7.74 × 10?4 mol L?1 (~155 ppm) Hg(II) solution shows first‐order kinetics with respect to the Hg(II) concentration, k = 1.1 × 10?3 s?1]. The mercury sorption capacity under nonbuffered conditions is around 3.6 mmol g?1 (i.e., 720 g of mercury/kg) and mostly occurs with the formation of diamido–mercury linkages, which result in the crosslinking of polyacrylamide brushes outside the spherical beads. The crosslinks can be destroyed by treatment with hot acetic acid, without hydrolysis of the amide groups. This process allows a complete elution of the mercury as mercury acetate, and the overall result is reversible crosslinking of the outer shell by mercuric ions. The material presented is efficient in the removal of mercury at concentrations measured in parts per million, and the mercury sorption is extremely selective over some foreign ions, such as Fe(III), Cd(II), Zn(II), and Pb(II). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3068–3078, 2002  相似文献   

10.
A novel thermoresponsive shell crosslinked three‐layer onion‐like polymer particles were prepared using hyperbranched polyglycerol (PG) as parents compound, the periphery hydroxyl groups of PG were transformed into trithiocarbonates (? SC(S)S? ) first; then, it was used as chain transfer agent to prepare star‐like block copolymer of N‐isopropyl acrylamide (NIPA) and N,N‐dimethylaminoethyl acrylate (DMA) in sequence via reversible addition fragmentation chain transfer (RAFT) process. Thus, a three‐layer polymer, PG? [SC(S)S? (DMA)? b? (NIPA)]n, was obtained. The middle layer of poly(DMA) was then crosslinked with 1,8‐diiodoctane, and the resulting onion‐like three‐layer polymer showed a lower critical solution temperature (LCST) in water because of the outer layer of poly(NIPA). The LCST value only slightly depended on the crosslinking degree. Finally, the ? SC(S)S? were transformed into thiols by sequential treating with sodium borohydride and formic acid; thus, the core molecule was chemically detached from the crosslinked shell and a novel shell crosslinked polymer particle was obtained. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5652–5660, 2005  相似文献   

11.
A novel microphase‐inversion method was proposed for the preparation of TiO2–SiO2/poly(methyl methacrylate) core–shell nanocomposite particles. The inorganic–polymer nanocomposites were first synthesized via a free‐radical copolymerization in a tetrahydrofuran solution, and the poor solvent was added slowly to induce the microphase separation of the nanocomposite and result in the formation of nanoparticles. The average particle sizes of the microspheres ranged from 70 to 1000 nm, depending on the reaction conditions. Transmission electron microscopy and scanning electron microscopy indicated a core–shell morphology for the obtained microspheres. Thermogravimetric analysis and X‐ray photoelectron spectroscopy measurements confirmed that the surface of the nanocomposite microspheres was polymer‐rich, and this was consistent with the core–shell morphology. The influence of the synthetic conditions, such as the inorganic composition and the content of the crosslinking monomer, on the particle properties was studied in detail. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3911–3920, 2006  相似文献   

12.
In this work, we have synthesized a polycation and a polyanion via a combination of oxyanion‐initiated polymerization and polymer reaction, and then developed a novel approach to prepare a controlled magnetic target gene carrier with magnetic Fe3O4 nanoparticles as core and poly(ethylene glycol) (PEG) segment as corona via layer‐by‐layer (LbL) assembly and shell‐crosslinking. Magnetic nanoparticles (MNPs) were first modified by poly[2‐(dimethylamino)ethyl methacrylate] (PDMAEMA) via radical polymerization. The resulting MNPs were used to compact deoxyribonucleic acid (DNA) through LbL assembly, involving four steps: ( 1 ) the binding of DNA to the polycation PDMAEMA on the surface of MNPs; ( 2 ) the produced particles in Step 1 with negative charge interacting with additional polycation ethoxy group end‐capped PDMAEMA (EtO‐PDMAEMA) homopolymer, leading to a positive charge surface; ( 3 ) using carboxyl group (‐COO) of poly(methacrylic acid) (PMAA) in a diblock copolymer (MePEG2000‐b‐PMAASH) as polyanion, which has partial mercapto groups (‐SH) in PMAA segment, to interact with the particles produced in Step 2; ( 4 ) the shell of the composite nanoparticle was crosslinked by oxidizing the ‐SH groups of the MePEG2000‐b‐PMAASH to form disulfide linkage (S? S). All the processes of LbL assembly were investigated by agarose gel retardation assay and zeta potential measurements. The in vitro cytotoxicity analysis proves that polyions/DNA MNPs have excellent properties and potential applications as gene carriers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
A novel amphiphilic thermosensitive poly(ethylene glycol)45b‐poly(methyl methacrylate46co‐3‐(trimethoxysilyl)propyl methacrylate)2b‐poly(N‐isopropylacrylamide)429 (PEG45b‐P(MMA46co‐MPMA2)‐b‐PNIPAAm429) triblock copolymer was synthesized via consecutive atom transfer radical polymerization techniques. The thermoinduced association behavior of the resulting triblock copolymers in aqueous medium was further investigated in detail by 1H NMR, transmission electron microscopy, and dynamic light scattering. The results showed that at the temperature (25 °C) below the LCST, PEG45b‐P(MMA46co‐MPMA2)‐b‐PNIPAAm429 triblock copolymers self‐assembled into the core crosslinked micelles with the hydrophobic P(MMA‐co‐MPMA) block constructing a dense core, protected by the mixed soluble PEG and PNIPAAm chains acting as a hydrophilic shell simultaneously. With an increase in temperature, the resulting core‐shell micelles converted into a new type of micelles with the hydrophilic PEG chains stretching out from the hydrophobic core through the collapsed PNIPAAm shell. On the other hand, at the temperature (40 °C) above the LCST, such triblock copolymers formed the crosslinked vesicles with the hydrophobic PNIPAAm and P(MMA‐co‐MPMA) blocks constructing a membrane core and the soluble PEG chains building the hydrophilic lumen and the shell. On further decreasing the temperature, the resulting vesicles underwent transformation from the shrunken to the expanded status, leading to the formation of swollen vesicles with enlarged size. This study is believed to present the first formation of two types of hybrid crosslinked self‐assemblies by thermoinduced regulation. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Numerical simulations of the phase separation and coarsening of particulate, ternary polymer blends have been performed using a ternary form of the modified Cahn–Hilliard equation. The third component was chosen to be a compatibilizer, typically being a random copolymer of the major components. The results show that compatibilized blends follow the same Lifshitz–Slyozov coarsening law as binary systems. Slower coarsening rates, indicating system stabilization, were observed for blends containing ∼10% compatibilizer and exhibiting a core‐shell morphology. Larger amounts of compatibilizer resulted in significantly higher coarsening rates. This appears to be a result of the greater affinity of the compatibilizer for the major component and warrants further experimental investigation. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1301–1306, 2000  相似文献   

15.
To prepare a crosslinked hybrid polymer electrolyte membrane (PEM) with high chemical stability, a silane monomer, namely p‐styryltrimethoxysilane (StSi), was first grafted to poly(ethylene‐co‐tetrafluoroethylene) (ETFE) film by γ‐ray preirradiation. Hydrolysis‐condensation and sulfonation were then performed on the StSi‐grafted ETFE (StSi‐g‐ETFE) films to give them crosslinks and proton conductibility, respectively. Thus, a crosslinked proton‐conducting hybrid PEM was obtained. The crosslinks introduced by the silane‐condensation have an inorganic ? Si? O? Si? structure, which enhance the chemical and thermal stabilities of the PEM. The effect of the timing of the hydrolysis‐condensation (before or after sulfonation) and the sulfonation method (by chlorosulfonic acid or H2SO4) on the properties of the resulting hybrid PEMs such as ion‐exchange capacity, proton conductivity, water uptake, chemical stability, and methanol permeability were investigated to confirm their applicability in fuel cells. We conclude that the properties of the new crosslinked hybrid StSi‐grafted PEMs are superior to divinylbenzene (DVB)‐crosslinked styrene‐grafted membranes. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5559–5567, 2008  相似文献   

16.
The atom transfer radical polymerization (ATRP) technique using the copper halide/ N,N′,N′,N″,N″‐pentamethyldiethylenetriamine complex was applied to the graft polymerization of methyl methacrylate and methyl acrylate on the uniform polystyrene (PS) seed particles and formed novel core‐shell particles. The core was submicron crosslinked PS particles that were prepared via emulsifier‐free emulsion polymerization. The crosslinked PS particles obtained were transferred into the organic phase (tetrahydrofuran), and surface modification using the chloromethylation method was performed. Then, the modified seed PS particles were used to initiate ATRP to prepare a controlled poly(methyl methacrylate) (PMMA) and poly(methyl acrylate) (PMA) shell. The final core‐shell particles were characterized using Fourier transform infrared spectroscopy, nuclear magnetic resonance, scanning electron microscopy, thermogravimetric analysis, and elementary analysis. The grafting polymerization was conducted successfully on the surface of modified crosslinked PS particles, and the shell thickness and weight ratio (PMMA and PMA) of the particles were calculated. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 892–900, 2002; DOI 10.1002/pola.10160  相似文献   

17.
Core–shell structured PEO‐chitosan nanofibers have been produced from electric field inducing phase separation. Chitosan, a positive charged polymer, was dissolved in 50 wt % aqueous acetic acid and the amino group on polycation would protonize, which would endow chitosan electrical properties. Chitosan molecules would move along the direction of the electric field under the electrostatic force and formed the shell layer of nanofibers. Preparation process of core – shell structure is quite simple and efficient without any post‐treatment. The core–shell structure and existence of chitosan on the shell layer were confirmed before and after post‐treatment by TEM and further supported by SEM, FTIR, XRD, DSC, and XPS studies. Blending ratio of PEO and chitosan, molecular weight of chitosan for the mobility of chitosan are thought to be the key influence factors on formation of core–shell structure. Drug release studies show that the prepared core–shell structure nanofibers has a potential application in the biomedical fields involving drug delivery. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2298–2311  相似文献   

18.
Structured latexes provide a promising route to hard coatings without the use of coalescing aids. We studied the thermomechanical properties of films from structured soft‐core/hard‐shell hydrophobic latexes. We found that the mechanical properties of these films were closely related to their very particular organization. When the rigid phase was continuous, whatever its volume fraction, the films exhibited a high elastic modulus. An analysis of the viscoelastic properties of the films provided a good method for obtaining information about the interphase between the hard shell and soft core of the latex particles. By varying the film structure through annealing or the particle composition (core/shell ratio, core crosslinking, etc.), we were able to tune the mechanical properties of the films. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2989–3000, 2000  相似文献   

19.
Quaternization and dequaternization of tertiary amine compounds were employed to obtain thermally reversible ionene networks from aqueous colloidal polymer dispersions prepared via emulsion polymerization. Chlorine‐functionalized polymers prepared via the emulsion copolymerization of styrene (St), butylacrylate (BA), or both with chloromethylstyrene, and amino‐functionalized polymers prepared via the emulsion copolymerization of St, BA, or both with 2‐(dimethylamino)ethylacrylate or 4‐vinylpyridine, were reacted without polymer separation, with a ditertiaryamine crosslinker and a dihalide crosslinker, respectively, to obtain crosslinked polymers. Crosslinked polymers were also obtained via the reaction of a chlorine‐functionalized polymer dispersion with an amino‐functionalized polymer dispersion or via the drying of the polymer blend prepared from the two kinds of dispersions. Reactive solubility experiments, flowability investigations (by thermocompression at ca. 215 °C), IR, and 1H NMR analyses of the obtained crosslinked polymers indicated that the generated ionene bridges dequaternized on heating and requaternized on cooling. In comparison with solution crosslinking, no organic solvent was employed, and simple procedures were required for the preparation of the thermally reversible covalent crosslinked polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4373–4384, 2000  相似文献   

20.
The purpose of this study was to understand the relationship between the mechanism of interdiffusion of the polymer chains across the interface and the formation of crosslinks in the interfacial zone when two elastomer sheets are joined and crosslinked. It is commonly accepted that the strength of the interface thus obtained is related to the number of interlinks that are created in the molecular interphase. This number generally is considered as equal to the number of crosslinks determined in the bulk. Ethylene‐copropylene‐codiene polymer (EPDM) does not follow this general law. The slow diffusion of the chains at the interface may be responsible for the peculiar behavior observed. In order to separate the two mechanisms responsible for the interfacial strength, diffusion, and crosslinking, two crosslinking procedures, namely peroxide crosslinking at high temperature and electron beam crosslinking at room temperature, have been used. This latter procedure allows control of the diffusion depth. It has been shown that diffusion of EPDM chains is indeed occurring at a much slower rate than expected, leading to less efficient co‐crosslinking in the interfacial zone. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3189–3199, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号