首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A set of poly(urethane‐imide)s were prepared using blocked Polyurethane (PU) prepolymer and pyromellitic dianhydride (PMDA). The PU prepolymer was prepared by the reaction of polyether glycol and 2,4‐tolylene diisocyanate, and end capped with N‐methyl aniline. The PU prepolymer was reacted with PMDA until the evolution of carbon dioxide ceased. The effect of tertiary amine catalysts, organo tin catalysts, solvents, and reaction temperature were studied and compared with the poly(urethane‐imide) prepared using phenol‐blocked PU prepolymer. N‐methyl aniline blocked PU prepolymer gave a higher molecular weight poly(urethane‐imide) at a lower reaction temperature in a shorter time. Amine catalysts were found to be more efficient than organo tin catalysts. The reaction was favorable in particular with N‐ethylmorpholine and diazabicyclo(2.2.2)octane (DABCO) as catalysts, and dimethylpropylene urea as a reaction medium. The poly(urethane‐imide)s were characterized by FTIR, GPC, TGA, and DSC analyses. The molecular weight decreased with an increase in reaction temperature. The thermal stability of the PU was found to increase by the introduction of imide component. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4032–4037, 2000  相似文献   

2.
3.
A polymer blend consisting of polyimide (PI) and polyurethane (PU) was prepared by means of a novel approach. PU prepolymer was prepared by the reaction of polyester polyol and 2,4-tolylenediisocyanate (2,4-TDI) and then end-capped with phenol. Poly(amide acid) was prepared from pyromellitic dianhydride (PMDA) and oxydianiline (ODA). A series of oligo(amide acid)s were also prepared by controlling the molar ratio of PMDA and ODA. The PU prepolymer and poly(amide acid) or oligo(amide acid) solution were blended at room temperature in various weight ratios. The cast films were obtained from the blend solution and treated at various temperatures. With the increase of polyurethane component, the films changed from plastic to brittle and then to elastic. The poly(urethane–imide) elastomers showed excellent mechanical properties and moderate thermal stability. The elongation of films with elasticity was more than 300%. The elongation set after the breaking of films was small. From the dynamic mechanical analysis, all the samples showed a glass transition temperature (Tg) at ca. −15°C, corresponding to Tg of the urethane component, suggesting that phase separation occurred between the two polymer components, irrespective of polyimide content. TGA and DSC studies indicated that the thermal degradation of poly(urethane–imide) was in the temperature range 250–270°C. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3745–3753, 1997  相似文献   

4.
A new dicarboxylic acid modified Mg‐Al LDH (DLDH) containing imide groups was prepared and its effects on the thermal and mechanical properties of the new synthesized aliphatic‐aromatic poly (amide‐imide) (PAI) were investigated via preparation of PAI/nanocomposite films by solution casting method. The results of X‐ray diffraction (XRD), field emission‐scanning electron microscopy (FE‐SEM) and transmission electron microscopy (TEM) showed a uniform dispersion for LDH layers into the PAI matrix. For comparison, the effects of polyacrylic acid‐co‐poly‐2‐acrylamido‐ 2‐methylpropanesulfonic acid (PAMPS‐co‐PAA) modified Mg‐Al LDH (ALDH) on the PAI properties were also studied. The thermogravimetric analysis (TGA) results exhibited that the temperature at 5 mass% loss (T5) increased from 277 °C to 310 °C for nanocomposite containing 2 mass% of DLDH, while T5 for nanocomposite containing 2 mass% of ALDH increased to 320 °C, along with the more enhancement of char residue compared to the neat PAI. According to the tensile test results, with 5 mass% DLDH loading in the PAI matrix, the tensile strength increased from 51.6 to 70.8 MPa along with an increase in Young's modulus. Also the Young's modulus of PAI nanocomposite containing 5 mass% ALDH reduced from 1.95 to 0.81 GPa.  相似文献   

5.
Two types of novel fluorinated diimide‐diacid monomers—[2,2′‐(4,4′‐(3′‐methylbiphenyl‐2,5‐diyl)bis(oxy)bis(3‐(trifluoromethyl)‐4,1‐phenylene))bis(1,3‐dioxoisoindoline‐5‐carboxylic acid)] (III) and [2,2′‐(4,4′‐(3′‐(trifluoromethyl)biphenyl‐2,5‐diyl)bis(oxy)bis(3‐(trifluoromethyl)‐4,1‐phenylene))bis(1,3‐dioxoisoindoline‐5‐carboxylic acid)] (IV)—were respectively designed and prepared by the condensation of diamines I and II with two molar equivalents of trimellitic anhydride. From both diimide‐diacids, two series of novel poly(amide‐imide)s (PAIs) (IIIa–IIIe and IVa–IVe) bearing different pendant groups were prepared by direct polymerization with various aromatic diamines (a–e). All the PAIs had a high glass transition temperatures (Tgs, 232–265 °C), excellent thermal stability (exhibiting only 5% weight loss at 493–542 °C under nitrogen) and good solubility in various organic solvents due to the introduction of the bulky pendant groups. The cast films of these PAIs (80–90 μm) had good optical transparency (73–81% at 450 nm, 85–88% at 550 nm and 87–89% at 800 nm) and low dielectric constants (2.65–2.98 at 1 MHz). The spin‐coated films of these PAIs presented a minimum birefringence value as low as 0.0077–0.0143 at 650 nm and low optical absorption at the near‐infrared optical communication wavelengths of 1310 and 1550 nm. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3243–3252  相似文献   

6.
Copoly(ethylene terephthalate‐imide)s (PETIs) were synthesized by the melt copolycondensation of bis(2‐hydroxyethyl)terephthalate with a new imide monomer, N,N′‐bis[p‐(2‐hydroxyethoxycarbonyl)phenyl]‐biphenyl‐3,3′,4,4′‐tetracarboxydiimide (BHEI). The copolymers were characterized by intrinsic viscosity, Fourier transform infrared, 1H NMR, differential scanning calorimetry, and thermogravimetric analysis techniques. Although their crystallinities decreased as the content of BHEI units increased, the glass‐transition temperatures (Tg) increased significantly. When 5 or 10 mol % BHEI units were incorporated into poly(ethylene terephthalate), Tg increased by 10 or 24 °C, respectively. The thermal stabilities of PETI copolymers were about the same as the thermal stability of PET, whereas the weight loss of PETIs decreased as the content of BHEI units increased. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 408–415, 2001  相似文献   

7.
Several new glycols containing both imide and sulfone groups, sulfonyl bisimide glycol (SBIG), were prepared from primary aromatic diamine, trimellitic anhydride and excess low molecular glycols. Then these SBIGs were used as chain extender to prepare a series of thermoplastic poly(imide‐urethane) (PIU), which introduced imide rings into the backbones. Compared to conventional linear polyurethane (PU), these PIUs exhibited better thermal stabilities because of the presence of the sulfone and built‐in imide groups. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4469–4477, 2005  相似文献   

8.
A new family of wholly aromatic poly(urea‐ether‐imide)s ( 4a–4f ) possessing binaphthylene‐twisted rings was prepared by diphenyl azidophosphate (DPAP)‐activated one‐pot polyaddition reaction of a preformed imide heterocyclic ring‐containing dicarboxylic acid, 2,2′‐bis(4‐trimellitimidophenoxy)‐ 1,1′‐binaphthyl ( 1 ) with various kinds of aromatic diamines ( 3a–3f ). At first, with due attention to structural similarity and to compare the characterization data, a model compound 2 was synthesized by the reaction of diimide‐dicarboxylic acid 1 with two mole equivalents of aniline. In this direct method, the polymers were prepared by polyaddition reactions of the in situ‐formed diisocyanate with the aromatic diamines. Molecular weights of the poly(urea‐ether‐imide)s obtained were evaluated viscometrically, and the inherent viscosities (ηinh) measured were in the range 0.10– 0.25 dl/g. All of the polymers were characterized by FT‐IR spectroscopic method and elemental analysis. All of the resulting polymers exhibited an excellent solubility in common polar solvents such as N‐methyl‐2‐pyrrolidone (NMP), dimethyl sulfoxide (DMSO), N,N‐dimethylformamide (DMF), and N,N‐dimethylacetamide (DMAc). Crystallinity of the resulted polymers was evaluated by wide‐angle X‐ray diffraction (WXRD) method, and they exhibited nearly a non‐crystalline nature as evidenced by their diffractograms. The glass transition temperatures (Tg) of the polymers determined by differential scanning calorimetry (DSC) thermograms were in the range of 274–302°C. The temperatures at 10% weight loss (Td10%) from their thermogravimetric analysis (TGA/DTG) curves were found to be in the range of 389–414°C in nitrogen atmosphere. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
A novel phosphorus–nitrogen thermotropic liquid crystalline poly(ester‐imide) (PN‐TLCP) derived from p‐acetoxybenzoic acid (ABA), terephthalic acid (TPA), acetylated 2‐(6‐oxide‐6H‐dibenz<c,e><1,2>oxa phosphorin‐ 6‐yl)‐1,4‐dihydroxy phenylene (DOPO‐AHQ) and N,N'‐hexane‐1,6‐diylbis(trimellitimide) was prepared by melt transesterification. The chemical structure, the mesophase behavior, and the thermal properties of the copolymer were investigated with Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy (1H NMR), elemental analysis, wide‐angle X‐ray diffraction (WAXD), hot‐stage polarized light microscopy (PLM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). PN‐TLCP exhibited a nematic mesophase with a strong birefringence at a low and broad mesomorphic temperature ranging from 220 to 350°C, an initial flow temperature as low as about 190°C and a glass transition temperature of about 160°C. PN‐TLCP has also good thermal stability, high char residues and excellent flame retardancy (limiting oxygen index, LOI = 71 and UL‐94 V‐0 rating). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A novel positive‐working and aqueous‐base‐developable photosensitive poly(imide benzoxazole) precursor based on a poly(amic acid hydroxyamide) bearing phenolic hydroxyl groups and carboxylic acid groups, a diazonaphthoquinone (DNQ) photosensitive compound, and a solvent was developed. Poly(amic acid hydroxyamide) was prepared through the polymerization of 2,2‐bis(3‐amino‐4‐hydroxyphenyl)hexafluoropropane, trimellitic anhydride chloride, and 4,4′‐oxydibenzoyl chloride. Subsequently, the thermal cyclization of the poly(amic acid hydroxyamide) precursor at 350 °C produced the corresponding poly(imide benzoxazole). The inherent viscosity of the precursor polymer was 0.17 dL/g. The cyclized poly(imide benzoxazole) showed a high glass‐transition temperature of 372 °C and 5% weight loss temperatures of 535 °C in nitrogen and 509 °C in air. The structures of the precursor polymer and the fully cyclized polymer were characterized with Fourier transform infrared and 1H NMR. The photosensitive polyimide precursor containing 25 wt % DNQ photoactive compound showed a sensitivity of 256 mJ/cm2 and a contrast of 1.14 in a 3‐μm film with a 0.6 wt % tetramethylammonium hydroxide developer. A pattern with a resolution of 5 μm was obtained from this composition. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5990–5998, 2004  相似文献   

11.
A diimide dicarboxylic acid, 1,4‐bis(4‐trimellitimidophenoxy)naphthalene (1,4‐BTMPN), was prepared by condensation of 1,4‐bis(4‐aminophenoxy)naphthalene and trimellitic anhydride at a 1 : 2 molar ratio. A series of novel poly(amide‐imide)s (IIa–k) with inherent viscosities of 0.72 to 1.59 dL/g were prepared by triphenyl phosphite‐activated polycondensation from the diimide‐diacid 1,4‐BTMPN with various aromatic diamines (Ia–k) in a medium consisting of N‐methyl‐2‐pyrrolidinone (NMP), pyridine, and calcium chloride. The poly(amide‐imide)s showed good solubility in NMP, N,N‐dimethylacetamide, and N,N‐dimethylformamide. The thermal properties of the obtained poly(amide‐imide)s were examined with differential scanning calorimetry and thermogravimetry analysis. The synthesized poly(amide‐imide)s possessed glass‐transition temperatures in the range of 215 to 263°C. The poly(amide‐imide)s exhibited excellent thermal stabilities and had 10% weight losses at temperatures in the range of 538 to 569°C under a nitrogen atmosphere. A comparative study of some corresponding poly(amide‐imide)s also is presented. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1–8, 2000  相似文献   

12.
We prepared blends of poly(butylene‐2,6‐naphthalate) (PBN) and poly(ether imide) (PEI) by solution‐casting from dichloroacetic acid solutions. The miscibility, crystallization, and melting behavior of the blends were investigated with differential scanning calorimetry (DSC) and dynamic mechanical analysis. PBN was miscible with PEI over the entire range of compositions, as shown by the existence of single composition‐dependent glass‐transition temperatures. In addition, a negative polymer–polymer interaction parameter was calculated, with the Nishi–Wang equation, based on the melting depression of PBN. In nonisothermal crystallization investigations, the depression of the crystallization temperature of PBN depended on the composition of the blend and the cooling rate; the presence of PEI reduced the number of PBN segments migrating to the crystallite/melt interface. Melting, recrystallization, and remelting processes occurring during the DSC heating scan caused the occurrence of multiple melting endotherms for PBN. We explored the effects of various experimental conditions on the melting behavior of PBN/PEI blends. The extent of recrystallization of the PBN component during DSC heating scans decreased as the PEI content, the heating rate, the crystallization temperature, and the crystallization time increased. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1694–1704, 2004  相似文献   

13.
The rigid‐rod polymers, poly(2,6‐naphthalenebenzobisoxazole) (Naph‐2,6‐PBO) and poly(1,5‐naphthalenebenzobisoxazole) (Naph‐1,5‐PBO) were synthesized by high temperature polycondensation of isomeric naphthalene dicarboxylic acids with 4,6‐diaminoresorcinol dihydrochloride in polyphosphoric acid. Expectedly, these polymers were found to have high thermal as well as thermooxidative stabilities, similar to what has been reported for other polymers of this class. The chain conformations of Naph‐2,6‐PBO and Naph‐1,5‐PBO were trans and the crystal structures of Naph‐2,6‐PBO and Naph‐1,5‐PBO had the three‐dimensional order, although the axial disorder existed for both Naph‐2,6‐PBO and Naph‐1,5‐PBO. Naph‐2,6‐PBO exhibited a more pronounced axial disorder than Naph‐1,5‐PBO because of its more linear shape. The repeat unit distance for Naph‐2,6‐PBO (14.15 Å) was found to be larger compared with that of Naph‐1,5‐PBO (12.45 Å) because of the more kinked structure of the latter. The extents of staggering between the adjacent chains in the ac projection of the crystal structure were 0.25c and 0.23c for Naph‐2,6‐PBO and Naph‐1,5‐PBO, respectively. Naph‐1,5‐PBO has a more kinked and twisted chain structure relative to Naph‐2,6‐PBO. The kinked and twisted chain structure of Naph‐1,5‐PBO in the crystal seems to prevent slippage between adjacent chains in the crystal structure. The more perfect crystal structure of Naph‐1,5‐PBO may be due to this difficulty in the occurrence of the slippage. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1948–1957, 2006  相似文献   

14.
In the present investigation, the preparation, characterization, and surface morphology of poly(amide‐imide) (PAI)/multi‐walled carbon nanotubes (MWCNTs) bionanocomposites (BNCs) were the main goals of the study. At first, an optically active PAI based on S‐valine as a biodegradable segment was synthesized. Then, carboxyl‐modified MWCNTs were functionalized with glucose (f‐MWCNT) as a biological active molecule in a green method to achieve a fine dispersion of f‐MWCNT bundles in the PAI matrix. The existence of S‐valine in the PAI matrix and functionalized MWCNT with glucose resulted in a series of potentially biodegradable nanocomposites. The obtained BNCs were characterized by various techniques. Field emission scanning and transmission electron microscopy micrographs of the composites showed a fine dispersion of f‐MWCNTs in the polymer matrix because of hydrogen bonding and π–π stacking interaction between f‐MWCNTs and polymer functional groups and aromatic moieties. Adding f‐MWCNTs into polymer matrix significantly improved the thermal stability of BNCs because of the increased interfacial interaction between the PAI matrix and f‐MWCNTs and also good dispersion of f‐MWCNT in the polymer matrix. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
A series of novel optically active poly(ester‐imide)s (ter‐PEIs) with high glass transition temperature (Tg), good thermal stability, and solubility were successfully designed and synthesized by direct polycondensation reactions, using p‐hydroxybenzoic acid (PHB), 4,4’‐dihydroxybenzophenone, and a chiral diacid, N,N'‐(pyromellitoyl)‐bis‐L‐phenylalanine diacid as monomers. The resulting terpolymers were characterized by1H‐NMR, FTIR, element analysis, thermogravimetric analysis, different scanning calorimeter and wide‐angle x‐ray diffraction, etc. The ter‐PEIs are amorphous polymers with good heat resistance and high Tgs. They are soluble in many common polar organic solvents and show optically rotation property. The specific rotation values of the ter‐PEIs increase with the molar ratio of the chiral diacid, and the rigid PHB monomer is beneficial to increase the Tgs of the polymers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A series of poly(ether imide)s (PEIs), III a–k , with light color and good physical properties were prepared from 1,4‐bis(3,4‐dicarboxypheoxy)‐2,5‐di‐tert‐butylbenzene dianhydride ( I ) with various aromatic diamines ( II a–k ) via a conventional two‐stage procedure that included a ring‐opening polyaddition to yield poly(amic acid)s (PAA), followed by thermal imidization to the PEI. The intermediate PAA had inherent viscosities in the range of 1.00–1.53 dL g?1. Most of the PEIs showed excellent solubility in chlorinated solvents such as dichloromethane, chloroform, and m‐cresol, but did not easily dissolve in dimethyl sulfoxide and amide‐type polar solvents. The III series had tensile strengths of 96–116 MPa, an elongation at break of 7–8%, and initial moduli of 2.0–2.5 GPa. The glass‐transition temperatures (Tg) and softening temperatures (Ts's) of the III series were recorded between 232 and 285 °C and 216–279 °C, respectively. The decomposition temperatures for 10% weight loss all occurred above 511 °C in nitrogen and 487 °C in air. The III series showed low dielectric constants (2.71–3.54 at 1 MHz), low moisture absorption (0.18–0.66 wt %), and was light‐colored with a cutoff wavelength below 380 nm and a low yellow index (b*) values of 7.3–14.8. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1270–1284, 2005  相似文献   

17.
Multiblock poly(carbonate‐co‐esters) (PBC‐PESe) containing poly(butylene carbonates) (PBC) and bio‐based poly(ethylene sebacate) (PESe) had been synthesized successfully by chain‐extension of dihydroxyl terminated PBC (PBC‐OH) and PESe (PESe‐OH) using 1,6‐hexmethylene diisocyanate as chain extender. The chemical structures, molecular weights, crystallization behaviors, and thermal and degradation properties of the copolymers were all characterized by proton nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, gel permeation chromatography, differential scanning calorimetry, polarized optical microscope, thermogravimetry analysis, water contact angle, and hydrolytic degradation. The resulting copolymers PBC‐PESe all had a sole glass transition temperature (Tg), indicating the two segments, PBC and PESe, were well compatible in the amorphous phase. PESe segment acted a significant role on enhancing the thermal degradation temperature and hydrolytic degradation rate of multiblock copolymers. And the crystallization rate of PBC got dramatically accelerated after PESe segment was incorporated. However, the crystallization mechanism did not change. Furthermore, the mechanical properties of multiblock copolymers could be adjusted by changing the feed composition. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
A series of silicon containing poly(ester imide)s [PEIs] were synthesized using novel vinyl silane diester anhydride (VSEA) and various aromatic and aliphatic dimines by two-step process includes ring-opening polyaddition reaction to form poly(amic acid) and thermal cyclo-dehydration process to obtain poly(ester imide)s. VSEA was synthesized by using dichloro methylvinylsilane and trimellitic anhydride in the presence of K2CO3 by nucleophilic substitution reaction. The PEIs were characterized by FTIR spectroscopy. The thermal properties of PEIs were investigated by using differential scanning calorimetry (DSC) and thermogravimetric analysis (TG) methods. The prepared PEIs showed glass transition temperatures in the range of 320–350°C and their 5% mass loss was recorded in the temperature range of 500–520°C in nitrogen atmosphere. These had char yield in the range of 45–55% at 800°C.  相似文献   

19.
A new adamantane‐based bis(ether anhydride), 2,2‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]adamantane dianhydride, was prepared in three steps starting from nitrodisplacement of 4‐nitrophthalonitrile with the potassium phenolate of 2,2‐bis(4‐hydroxyphenyl)adamantane. A series of adamantane‐containing poly(ether imide)s were prepared from the adamantane‐based bis(ether anhydride) and aromatic diamines by a conventional two‐stage synthesis in which the poly(ether amic acid)s obtained in the first stage were heated stage‐by‐stage at 150–270°C to give the poly(ether imide)s. The intermediate poly(ether amic acid)s had inherent viscosities between 0.56 and 1.92 dL/g. Except for those from p‐phenylenediamine, m‐phenylenediamine, and benzidine, all the poly(ether amic acid) films could be thermally converted into transparent, flexible, and tough poly(ether imide) films. All the poly(ether imide)s showed limited solubility in organic solvents, although they were amorphous in nature as evidenced by X‐ray diffractograms. Glass transition temperatures of these poly(ether imide)s were recorded in the range of 242–317°C by differential scanning calorimetry and of 270–322°C by dynamic mechanical analysis. They exhibited high resistance to thermal degrdation, with 10% weight loss temperatures being recorded between 514–538°C in nitrogen and 511–527°C in air. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1619–1628, 1999  相似文献   

20.
A series of new poly(imide‐hydrazide)s and poly(amide‐imide‐hydrazide)s were obtained by the direct polycondensation of N‐[p‐(or m‐)carboxyphenyl]trimellitimide (p‐ or m‐CPTMI) with terephthalic dihydrazide (TPH), isophthalic dihydrazide (IPH), and p‐aminobenzhydrazide (p‐ABH) by means of diphenyl phosphite and pyridine in the N‐methyl‐2‐pyrrolidone (NMP) solutions containing dissolved CaCl2. The resulting hydrazide‐containing polymers exhibited inherent viscosities in the 0.15–0.96 dL/g range. Except for that derived from p‐CPTMI with TPH or p‐ABH, the other hydrazide copolymers were readily soluble in polar solvents such as NMP and dimethyl sulfoxide (DMSO). As evidenced by X‐ray diffraction patterns, the hydrazide copolymer obtained from TPH showed a moderate level of crystallinity, whereas the others were amorphous in nature. Most of the amorphous hydrazide copolymers formed flexible and tough films by solvent casting. The amorphous hydrazide copolymers had glass‐transition temperatures (Tg) between 187 and 233 °C. All hydrazide copolymers could be thermally converted into the corresponding oxadiazole copolymers approximately in the region of 250–400 °C, as evidenced by the DSC thermograms. The oxadiazole copolymers showed a significantly decreased solubility when compared to their respective hydrazide precursors. They exhibited Tg's of 264–302 °C and did not show dramatic weight loss before 400 °C in air or nitrogen. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1599–1608, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号