首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three new chalcogen-bridged mercury–iron clusters with 7, 14, and 39 mercury centers were obtained from the reaction of tBuSSiMe3 with [Fe(CO)4(HgX)2] (X= Cl, Br). The compounds were isolated in the form of orange crystals that were characterized by X-ray crystallography. The picture on the right shows the structure of the heavy-atom skeleton of [Hg14Fe12{Fe(CO)4}6S6(StBu)8Br18] (Hg, Fe, Br, and S are black, diagonally striped, white, and horizontally striped, respectively).  相似文献   

2.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XXII. The Formation of [η2‐{tBu–P=P–SiMe3}Pt(PR3)2] from (Me3Si)tBuP–P=P(Me)tBu2 and [η2‐{C2H4}Pt(PR3)2] (Me3Si)tBuP–P = P(Me)tBu2 reacts with [η2‐{C2H4}Pt(PR3)2] yielding [η2‐{tBu–P=P–SiMe3}Pt(PR3)2]. However, there is no indication for an isomer which would be the analogue to the well known [η2‐{tBu2P–P}Pt(PPh3)2]. The syntheses and NMR data of [η2‐{tBu–P=P–SiMe3}Pt(PPh3)2] and [η2‐{tBu–P=P–SiMe3}Pt(PMe3)2] as well as the results of the single crystal structure determination of [η2‐{tBu–P=P–SiMe3}Pt(PPh3)2] are reported.  相似文献   

3.
Three new complexes with phosphanylphosphido ligands, [Cu4{μ2‐P(SiMe3)‐PtBu}4] ( 1 ), [Ag4{μ2‐P(SiMe3)‐PtBu2}4] ( 2 ) and [Cu{η1‐P(SiMe3)‐PiPr2}2][Li(Diglyme)2]+ ( 3 ) were synthesized and structurally characterized by X‐ray diffraction, NMR spectroscopy, and elemental analysis. Complexes 1 and 2 were obtained in the reactions of lithium derivative of diphosphane tBu2P‐P(SiMe3)Li · 2.7THF with CuCl and [iBu3PAgCl]4, respectively. The X‐ray diffraction analysis revealed that the complexes 1 and 2 present macrocyclic, tetrameric form with Cu4P4 and Ag4P4 core. Complex 3 was prepared in the reaction of CuCl with a different derivative of lithiated diphosphane iPr2P‐P(SiMe3)Li · 2(Diglyme). Surprisingly, the X‐ray analysis of 3 revealed that in this reaction instead of the tetramer the monomeric form, ionic complex [Cu{η1‐P(SiMe3)‐PiPr2}2][Li(Diglyme)2]+ was formed.  相似文献   

4.
Syntheses and Reactions of Aluminium Alkoxide Compounds Al(OcHex)3 ( 1 ) can be synthesized by the reaction of Al with cyclohexanol under evolving of H2 in boiling xylene. [Li{Al(OCH2Ph)4}] ( 2 ) was obtained by treatment of PhCH2OH with a 1 M solution of LiAlH4 in THF. [{(THF)Li}2{Al(OtBu)4}Cl] ( 3 ) is the result of the reaction of four equivalents of LiOtBu on AlCl3 in THF. 3 is the educt for the reactions with the Lewis‐acids InCl3 and FeCl3 in THF leading to the metalates [{(THF)2Li}2{Al(OtBu)4}] · [MCl4] [M = In ( 4 ), Fe ( 5 )]. The attempt to react InCl3 with four equivalents of LiOtBu leads to only one isolated and characterized product, the complex [Li4(OtBu)3(THF)3Cl]2 · THF ( 6 · THF), which can also be synthesized by the treatment of LiCl with three equivalents of LiOtBu in THF. 1–6 · THF were characterized by NMR, IR and MS techniques as well as by X‐ray structure determinations. According to them, 1 , which is tetrameric in solution, is the first structurally characterized example of the proposed trimer form of aluminium alkoxides [ROAl{Al(OR)4}2] with a central trigonal bipyramidal coordinated Al atom. 2 forms a coordination polymer with a distorted tetrahedral coordination sphere of Li and Al, running along [100]. The trinuclear structure skeleton [{(THF)2Li}2{Al(OtBu)4}]+ is still present in the isotypical metalates 4 and 5 . The counter ions [MCl4] possess nearly Td symmetry. The remarkable structural motif of 6 · THF are two heterocubanes [Li4(OtBu)3(THF)3Cl] dimerized by Li–Cl bonds.  相似文献   

5.
Treatment of Co4(CO)12 with an excess of trimethylsilylacetylene (TMSA) in the presence of tri(2‐thienyl)phosphine in THF at 25 °C for 2 hours yielded six compounds. Two pseudo‐octahedral, alkyne‐bridged tetracobalt clusters, [Co44‐η2‐HC≡CSiMe3)(CO)10(μ‐CO)2] ( 4 ) and [Co44‐η2‐HC≡CSiMe3)‐(CO)9(μ‐CO)2{P(C4H4S)3}] ( 6 ), along with an alkyne‐bridged dicobalt complex, [Co2(CO)5(μ‐HC≡CSiMe3)‐{P(C4H4S)3}] ( 5 ), were obtained as new compounds. The addition of the thienylphosphine ligand, in fact, facilitates the reaction rate. Reaction of an alkyne‐bridged dicobalt complex, [(η2‐H‐C≡C‐SiMe3)Co2(CO)6] ( 3 ), with a bi‐functional ligand, PPh(‐C≡C‐SiMe3)2, yielded an unexpected six‐membered, cyclic compound, {(Ph)(Me3Si‐C≡C)P‐[(η2‐C≡C‐SiMe3)Co2(CO)5]}2 ( 7 ). All of these new compounds were characterized by spectroscopic means; the solid‐state structures of ( 5 ), ( 6 ) and ( 7 ) have been established by X‐ray crystallography.  相似文献   

6.
New Phosphorus-bridged Transition Metal Complexes The Crystal Structures of [Co4(CO)10(PiPr)2], [Fe3(CO)9(PtBu)(PPh)], [Cp3Fe3(CO)2(PPtBu)· (PtBu)], [(NiPPh3)2(PiPr)6], [(NiPPh3)Ni{(PtBu)3}2], and [Ni8(PtBu)6(PPh3)2] By the reaction of cyclophosphines with transition metal carbonyl-derivatives polynuclear complexes are built, in which the PR-ligands (R = organic group) are bonded in different ways to the metal. Depending on the reaction conditions the following compounds can be characterized: [Co4(CO)10 · (PiPr)2] ( 2 ), [Fe3(CO)9(PtBu)(PPh)] ( 3 ), [Cp3Fe3(CO)2(PPtBu) · (PtBu)] ( 4 ), [(NiPPh3)2(PiPr)6] ( 5 ), [(NiPPh3)Ni{(PtBu)3}2] ( 6 ) and [Ni8(PtBu)6(PPh3)2] ( 7 ). The structures of 2–7 were obtained by X-ray single crystal structure analysis ( 2 : space group Pccn (No. 56), Z = 4, a = 1001,4(2) pm, b = 1375,1(3) pm, c = 1675,5(3) pm; 3 : space group P21 (No. 4), Z = 2, a = 914,3(4) pm, b = 1268,7(4) pm, c = 1028,2(5) pm, β = 101,73(2)°; 4 : space group P1 (No. 2), Z = 2, a = 946,0(5) pm, b = 1074,4(8) pm, c = 1477,7(1,0) pm, α = 107,63(5)°, β = 94,66(5)°, γ = 111,04(5)°; 5 : space group P1 (No. 2), Z = 2, a = 1213,6(2) pm, b = 1275,0(2) pm, c = 2038,8(4) pm, α = 92,810(10)°, β = 102,75(2)°, γ = 93,380(10)°; 6 : space group P1 (No. 2), Z = 2, a = 1157,5(5) pm, b = 1371,9(6) pm, c = 1827,6(10) pm; α = 69,68(3)°, β = 80,79(3)°, γ = 69,36(3)°; 7 : space group P3 (No. 147), Z = 1, a = 1114,1(2) pm, b = 1114,1(2) pm, c = 1709,4(3) pm).  相似文献   

7.
Coordinatively Unsaturated Iron Chalcogenolate Complexes with Trigonal Planar Ligand Spheres – Synthesis, Properties, and Reactions with Nitrogen and Oxygen Donor Molecules The new bulky organo-selenium compound 2,4,6-triphenylbenzeneselenole ( 1 A ) was synthesized by a multistep-reaction from 1,3,5-triphenylbenzene. 1 A was converted by oxidation into the air-stable bis(2,4,6-triphenylphenyl)diselenide ( 1 B ), which was characterized by X-ray diffraction. The stepwise reaction of [Fe2{N(SiMe3)2}4] with 1 A leads to the complexes [Fe2(SeC6H2-2,4,6-Ph3)2{N(SiMe3)2}2] ( 2 ) and [Fe2(SeC6H2-2,4,6-Ph3)4] ( 3 ), controlled by their molar ratios. The conversion of 2 to 3 is also described. In addition, the coordinatively unsaturated thiolate complexes [Fe2{SC6H3-2,6-(SiMe3)2}2{N(SiMe3)2}2] ( 4 ) and [Fe2{SC6H3-2,6-(SiMe3)2}4] ( 5 ) were synthesized by stepwise reaction of [Fe2{N(SiMe3)2}4] with 2,6-bis(trimethylsilyl)benzenethiole. It is also possible to convert the heteroleptic compound 4 into the homoleptic thiolate complex 5 . During our investigations of the reactivity of 5 towards small electroneutral molecules, the compounds [Fe2{SC6H3-2,6-(SiMe3)2}4 · (MeCN)2] ( 6 ) and [Fe{SC6H3-2,6-(SiMe3)2}2(OPEt3)] ( 7 ) were obtained. 6 is the product of the addition of two molecules of acetonitrile to 5 . The iron atoms of 6 are coordinated by three sulfur and one nitrogen atom in a distorted tetrahedral manner. When 5 is treated with triethylphosphine oxide instead of acetonitrile, the mononuclear complex 7 with the coordination number three is formed. The iron atom is surrounded by two sulfur and one oxygen donor functions.  相似文献   

8.
Subvalent Gallium Triflates – Potentially Useful Starting Materials for Gallium Cluster Compounds By reaction of GaCp* with trifluormethanesulfonic acid in hexane a mixture of gallium trifluormethanesulfonates (triflates, OTf) is obtained. This mixture reacts readily with lithiumsilanides [Li(thf)3Si(SiMe3)2R] (R = Me, SiMe3) to afford the cluster compounds [Ga6{Si(SiMe3)Me}6], [Ga2{Si(SiMe3)3}4] and [Ga10{Si(SiMe3)3}6]. By crystallization from various solvents the gallium triflates [Ga(OTf)3(thf)3], [HGa(OTf)(thf)4]+ [Ga(OTf)4(thf)3], [Cp*GaGa(OTf)2]2 and [Ga(toluene)2]+ [Ga5(OTf)6(Cp*)2] were isolated and characterized by single crystal X ray structure analysis.  相似文献   

9.
Metalat Ions [Al(OR)4] as Chelating Ligands for Transition Metal Cations Waterfree CoCl2 can be reacted with [{Li(Diglyme)}{Al(OtBu)4}] in THF to the complex [Li(THF)4][{CoCl2}{Al(OtBu)4}]. Addition of diglyme to the reaction mixtures gives the blue compound [Li(diglyme)2][{CoCl2}{Al(OtBu)4}] ( 1 ). According to this procedure the FeII complex [Li(Diglyme)2][{FeCl2}2{Al(OtBu)4}] ( 2 ) was formed by treatment of FeCl2 with Li[Al(OtBu)4]. [{Li(diglyme)}{Al(OtBu)4}] in THF/diglyme can be used as alkoxide transfer reagent on TiCl4 to give the neutral complex [TiCl2(OtBu)2(diglyme)] ( 3 ). The sky‐blue salt [Li(THF)4]2[{CoCl2}3{Al(OCH2Ph)4}2] ( 4 ) was obtained by reaction of Li[Al(OCH2Ph)4] with CoCl2 in THF. By treatment of 4 with diglyme ligand redistribution was observed giving the sky‐blue compound [Li(Diglyme)2]2[{CoCl2}3{Al(OCH2Ph)4}2] ( 5 ) and the violet salt [Li(Diglyme)2]2[Co2Cl5(OCH2Ph)] ( 6 ). A similar salt can be synthesized also directly from Li[Al(OtBu)4] and CoCl2 in diglyme to give [Li(Diglyme)2]2[Co2Cl5(OtBu)] ( 7 ). 1 — 7 were characterized by IR spectroscopy, partly by mass spectrometry and X‐ray analyses. UV‐VIS spectra were recorded from 1 and 5 . According to the X‐ray analyses the MII ions as well as the AlIII ions are coordinated distorted tedrahedrally. In 1 , 2 , 4 und 5 the unit [Al(OR)4] acts a chelating ligand as desired.  相似文献   

10.
New Polynuclear Indium Nitrogen Compounds – Synthesis and Crystal Structures of [In4X4(NtBu)4] (X = Cl, Br, I) and [In3Br4(NtBu)(NHtBu)3] The reaction of the indium trihalides InX3 (X = Cl, Br, I) with LiNHtBu in THF leads to the In4N4‐heterocubanes [In4X4(NtBu)4] (X = Cl 1 , Br 2 , I 3 ). Additionally [In3Br4(NtBu)(NHtBu)3] ( 4 ) was obtained as a by‐product in the synthesis of 2 . 1 – 4 have been characterized by x‐ray crystal structure analysis. 1 – 3 consist of In4N4 heterocubane cores with an alternating arrangement of In and N atoms. The In atoms are coordinated nearly tetrahedrally by three N‐atoms and a terminal halogen atom. 4 contains a tricyclic In3N4 core which can be formally derived from an In4N4‐heterocubane by removing one In atom.  相似文献   

11.
The reactions of [Co2(CO)8] with one equiv of the benzamidinate (R2bzam) group‐14 tetrylenes [M(R2bzam)(HMDS)] (HMDS=N(SiMe3)2; 1 : M=Ge, R=iPr; 2 : M=Si, R=tBu; 3 : M=Ge, R=tBu) at 20 °C led to the monosubstituted complexes [Co21M?M(R2bzam)(HMDS)}(CO)7] ( 4 : M=Ge, R=iPr; 5 : M=Si, R=tBu; 6 : M=Ge, R=tBu), which contain a terminal κ1M–tetrylene ligand. Whereas the Co2Si and Co2Ge tert‐butyl derivatives 5 and 6 are stable at 20 °C, the Co2Ge isopropyl derivative 4 evolved to the ligand‐bridged derivative [Co2{μ‐κ2Ge,N‐Ge(iPr2bzam)(HMDS)}(μ‐CO)(CO)5] ( 7 ), in which the Ge atom spans the Co?Co bond and one arm of the amidinate fragment is attached to a Co atom. The mechanism of this reaction has been modeled with the help of DFT calculations, which have also demonstrated that the transformation of amidinate‐tetrylene ligands on the dicobalt framework is negligibly influenced by the nature of the group‐14 metal atom (Si or Ge) but is strongly dependent upon the volume of the amidinate N?R groups. The disubstituted derivatives [Co21M?M(R2bzam)(HMDS)}2(CO)6] ( 8 : M=Ge, R=iPr; 9 : M=Si, R=tBu; 10 : M=Ge, R=tBu), which contain two terminal κ1M–tetrylene ligands, have been prepared by treating [Co2(CO)8] with two equiv of 1 – 3 at 20 °C. The IR spectra of 8 – 10 have shown that the basicity of germylenes 1 and 3 is very high (comparable to that of trialkylphosphanes and 1,3‐diarylimidazol‐2‐ylidenes), whereas that of silylene 2 is even higher.  相似文献   

12.
We report on the synthesis of new derivatives of silylated clusters of the type [Ge9(SiR3)3]? (R = SiMe3, Me = CH3; R = Ph, Ph = C6H5) as well as on their reactivity towards copper and zinc compounds. The silylated cluster compounds were synthesized by heterogeneous reactions starting from the Zintl phase K4Ge9. Reaction of K[Ge9{Si(SiMe3)3}3] with ZnCl2 leads to the already known dimeric compound [Zn(Ge9{Si(SiMe3)3}3)2] ( 1 ), whereas upon the reaction with [ZnCp*2] the coordination of [ZnCp*]+ to the cluster takes place (Cp*=1,2,3,4,5‐pentamethylcyclopentadienyl) under the formation of [ZnCp*(Ge9{Si(SiMe3)3}3)] ( 2 ). A similar reaction leads to [CuPiPr3(Ge9{Si(SiMe3)3}3)] ( 3 ) from [CuPiPr3Cl] (iPr=isopropyl). Further we investigated the novel silylated cluster units [Ge9(SiPh3)3]? ( 4 ) and [Ge9(SiPh3)2]? ( 5 ), which could be identified by mass spectroscopy. Bis‐ and tris‐silylated species can be synthesized by the respective stoichiometric reactions, and the products were characterized by ESI‐MS and NMR experiments. These clusters show rather different reactivity. The reaction of the tris‐silylated anion 4 with [CuPiPr3Cl] leads to [(CuPiPr3)3Ge9(SiPh3)2]+ as shown from NMR experiments and to [(CuPiPr3)4{Ge9(SiPh3)2}2] ( 6 ), which was characterized by single‐crystal X‐ray diffraction. Compound 6 shows a new type of coordination of the Cu atoms to the silylated Zintl clusters.  相似文献   

13.
Reactions of Zinc and Cadmium Halides with Tris(trimethylsilyl)phosphane and Tris(trimethylsilyl)arsane ZnCl2 reacts with E(SiMe3)3 (E = P, As) in toluene in the presence of PnPr3 to give the binuclear complexes [Zn2Cl2{E(SiMe3)2}2(PnPr3)2] · C7H8 (E = P 1 , As 2 ). Therefore by the use of PiPr3 clusters consisting of ten metal atoms are obtained, [Zn10Cl12(ESiMe3)4(PiPr3)4] (E = P 3 , As 4 ). As a result of the reaction of CdBr2 with P(SiMe3)3 the compound [CdBr2{P(SiMe3)3}]2 ( 5 ) can be isolated at –40 °C. In the presence of PnPr3 CdBr2 reacts with P(SiMe3)3 forming the binuclear complex [Cd2Br2{P(SiMe3)2}2(PnPr3)2] · thf ( 6 ). The same reaction with PiPr3 yields to the cluster [Cd10Br12(PSiMe3)4{P(SiMe3)3}4] · 2 C7H8 ( 7 ). ZnI2 and CdI2 react with As(SiMe3)3 to yield the complexes [MI2{As(SiMe3)3}]2 (M = Zn 8 , Cd 9 ). In the case of CdI2 additionally the cluster [Cd10I12(AsSiMe3)4 · {As(SiMe3)3}4] · 4,5 C7H8 ( 10 ) is formed which is analogous to the compounds 3 , 4 and 7 . In the presence of [PnBu4]I 8  reacts in THF to give the ionic compound [PnBu4]2[Zn6I6(AsSiMe3)4(thf)2] · C6H6 ( 11 ).  相似文献   

14.
The Hexagallane [Ga6{SiMe(SiMe3)2}6] and the closo‐Hexagallanate [Ga6{Si(CMe3)3}4 (CH2C6H5)2]2— — the Transition to an Unusual precloso‐Cluster The closo hexagallanate [Ga6R4(CH2Ph)2]2— (R = SitBu3) as well as the hexagallane Ga6R6 (R = SiMe(SiMe3)2) with only six cluster electron pairs were isolated from reactions of “GaI” with the corresponding silanides. The structure of the latter is derived from an octahedron by a Jahn‐Teller‐distortion and is different from the capped trigonal bipyramidal one expected by the Wade‐Mingos rules. Both compounds were characterized by X‐ray crystallography. The bonding is discussed with simplified Ga6H6 and Ga6H62— models via DFT methods.  相似文献   

15.
Syntheses, Structure and Reactivity of η3‐1,2‐Diphosphaallyl Complexes and [{(η5‐C5H5)(CO)2W–Co(CO)3}{μ‐AsCH(SiMe3)2}(μ‐CO)] Reaction of ClP=C(SiMe2iPr)2 ( 3 ) with Na[Mo(CO)35‐C5H5)] afforded the phosphavinylidene complex [(η5‐C5H5)(CO)2Mo=P=C(SiMe2iPr)2] ( 4 ) which in situ was converted into the η1‐1,2‐diphosphaallyl complex [η5‐(C5H5)(CO)2Mo{η3tBuPPC(SiMe2iPr)2] ( 6 ) by treatment with the phosphaalkene tBuP=C(NMe2)2. The chloroarsanyl complexes [(η5‐C5H5)(CO)3M–As(Cl)CH(SiMe3)2] [where M = Mo ( 9 ); M = W ( 10 )] resulted from the reaction of Na[M(CO)35‐C5H5)] (M = Mo, W) with Cl2AsCH(SiMe3)2. The tungsten derivative 10 and Na[Co(CO)4] underwent reaction to give the dinuclear μ‐arsinidene complex [(η5‐C5H5)(CO)2W–Co(CO)3{μ‐AsCH(SiMe3)2}(μ‐CO)] ( 11 ). Treatment of [(η5‐C5H5)(CO)2Mo{η3tBuPPC(SiMe3)2}] ( 1 ) with an equimolar amount of ethereal HBF4 gave rise to a 85/15 mixture of the saline complexes [(η5‐C5H5)(CO)2Mo{η2tBu(H)P–P(F)CH(SiMe3)2}]BF4 ( 18 ) and [Cp(CO)2Mo{F2PCH(SiMe3)2}(tBuPH2)]BF4 ( 19 ) by HF‐addition to the PC bond of the η3‐diphosphaallyl ligand and subsequent protonation ( 18 ) and/or scission of the PP bond by the acid ( 19 ). Consistently 19 was the sole product when 1 was allowed to react with an excess of ethereal HBF4. The products 6 , 9 , 10 , 11 , 18 and 19 were characterized by means of spectroscopy (IR, 1H‐, 13C{1H}‐, 31P{1H}‐NMR, MS). Moreover, the molecular structures of 6 , 11 and 18 were determined by X‐ray diffraction analysis.  相似文献   

16.
Syntheses and Structure Elucidations of Novel (Ironcarbonyl)zinc and ‐cadmium Chloride Derivatives Reactions of zinc/cadmium chloride with Na2[Fe(CO)4] lead to a number of new (iron carbonyl)zinc/cadmium chlorides, wherein the reaction course depends on the used solvent used. In the reaction of ZnCl2 with Na2[Fe(CO)4], three new substances can be prepared. The compound [Zn2Cl2Fe(CO)4(THF)2] ( 1 ), which consists of neutral polymeres, is formed in THF, the ionic compound [Na(DME)3][Zn2Cl3Fe(CO)4] ( 2 ) forms in DME, and from a mixture of THF and TMEDA the compound [Zn2Cl2Fe(CO)4(TMEDA)2] ( 3 ) is obtained as a monomere. Also by using CdCl2, the reaction with Na2[Fe(CO)4] in THF leads to the polymeric compound ([(Cd4Cl6)Fe(CO)4(THF)5] ( 4 )). Carrying out the reaction in a mixture of toluene and DME leads to the formation of the ionic compound [Na(DME)3]2[Cd6{Fe(CO)4}6Cl2(DME)2] ( 5 ) in which an annular dianion consisting of twelve metal atoms is found. From an aqueous solution and subsequent work‐up in THF, the compound [Fe(THF)4(H2O)2][Cd8{Fe(CO)4}4Cl9(THF)6]2 ( 6 ) can be prepared which contains an cluster anion that is built of anellated six membered rings.  相似文献   

17.
We report a monometallic dysprosium complex, [Dy(OtBu)2(py)5][BPh4] ( 5 ), that shows the largest effective energy barrier to magnetic relaxation of Ueff=1815(1) K. The massive magnetic anisotropy is due to bis‐trans‐disposed tert‐butoxide ligands with weak equatorial pyridine donors, approaching proposed schemes for high‐temperature single‐molecule magnets (SMMs). The blocking temperature, TB , is 14 K, defined by zero‐field‐cooled magnetization experiments, and is the largest for any monometallic complex and equal with the current record for [Tb2N2{N(SiMe3)2}4(THF)2].  相似文献   

18.
Novel silylation reactions at [Ge9] Zintl clusters starting from the chlorosilanes SiR3Cl (R = iBu, iPr, Et) and the Zintl phase K4Ge9 are reported. The formation of the tris‐silylated anions [Ge9(SiR3)3] [R = iBu ( 1a ), iPr ( 1b ), Et ( 1c )] by heterogeneous reactions in acetonitrile was monitored by ESI‐MS measurements. For R = iBu 1H, 13C and 29Si NMR experiments confirmed the exclusive formation of 1a . Subsequent reactions of 1a with CuNHCDippCl and Au(PPh3)Cl result in formation of the neutral metal complex (CuNHCDipp)[Ge9{Si(iBu)3}3]·0.5 tol ( 2 ·0.5 tol) and the metal bridged dimeric unit {Au[Ge9{Si(iBu)3}3]2} ( 3a ), isolated as a (K‐18c6)+ salt in (K‐18c6)Au[Ge9{Si(iBu)3}3]2·tol ( 3 ·tol), respectively. Finally, from a toluene/hexane solution of 1a in presence of 18‐crown‐6, crystals of the compound (K‐18c6)2[Ge9{Si(iBu)3}2]·tol ( 4 ·tol), containing the bis‐silylated cluster anion [Ge9(Si(iBu)3)2]2– ( 4a ), were obtained. The compounds 2 ·0.5 tol, 3 ·tol and 4 ·tol were characterized by single‐crystal structure determination.  相似文献   

19.
Cleavage of dihydrogen is an important step in the industrial and enzymatic transformation of N2 into ammonia. The reversible cleavage of dihydrogen was achieved under mild conditions (room temperature and 1 atmosphere of H2) by the molecular uranium nitride complex, [Cs{U(OSi(OtBu)3)3}2(μ‐N)] 1, leading to a rare hydride–imide bridged diuranium(IV) complex, [Cs{U(OSi(OtBu)3)3}2(μ‐H)(μ‐NH)], 2 that slowly releases H2 under vacuum. This complex is highly reactive and quickly transfers hydride to acetonitrile and carbon dioxide at room temperature, affording the ketimide‐ and formate‐bridged UIV species [Cs{U(OSi(OtBu)3)3}2(μ‐NH)(μ‐CH3CHN)], 3 and [Cs{U(OSi(OtBu)3)3}2(μ‐HCOO)(μ‐NHCOO)], 4 .  相似文献   

20.
Synthesis and Structure of Tetrameric Tris(trimethylsilyl)indium(I) and of New Silyl substituted Indium Compounds The reaction of InCp* with [LiSi(SiMe3)3·3thf] yielded in the first silylsubstituted tetrahedrane of indium [In4{Si(SiMe3)3}4] ( 1 ). It crystallizes together with [In{Si(SiMe3)3}3] ( 2 ) in dark green crystals. Colourless crystals of [Li(OH)(OSiMe3)In{Si(SiMe3)3}2]2 ( 3 ) were isolated as a byproduct from this reaction. It's structural core are three connected four membered rings made up of In‐, Li‐ and O‐atoms. From the reaction of [InOSO2CF3] with [LiSi(SiMe3)3·3thf] colourless crystals of [In{Si(SiMe3)3}2OSO2CF3·thf] ( 4 ) were isolated. InCp* reacted with [LiSiMe(SiMe3)2·3thf] to form the orange‐coloured monoindane [In{SiMe(SiMe3)2}3] ( 5 ). 1 – 4 were characterized by X‐ray crystal structure analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号