首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis and structures of the two CuI halide complexes [Cu5(dppm)(dppm?)2(OtBu)Cl2] and [Cu3(dppm)3Br2][CuBr2] (dppm = Ph2PCH2PPh2, dppm? = [Ph2PCHPPh2]?) are reported. The compounds were obtained by treating reaction mixtures of [CuOtBu] and dppm with dichloromethane or dibromomethane.  相似文献   

2.
Halomercurates: Syntheses and Crystal Structures of [Cu(en)2][Hg2Cl6], [Cu(en)2][Hg2Br6], and [Cu(en)2][HgBr4] Crystals of [Cu(en)2][Hg2Cl6] ( 1 ) have been obtained by layering a solution of Hg(NO3)2 and NaCl with a solution of [Cu(en)2]SO4. An analogous procedure, using NaBr instead of NaCl, gave crystals of [Cu(en)2][HgBr4] ( 3 ). Crystals of [Cu(en)2][Hg2Br6] ( 2 ) were obtained by gel crystallization using the same starting materials as for 3 . The complexes show very low solubility. The dinuclear anions of 1 consist of two nearly planar HgCl3 units related by a center of symmetry. In 2 infinite anionic chains are present, made up of parallel HgBr3 units. These units are packed in such a way as to produce a trigonal bipyramidal configuration around the Hg atoms. 3 contains mononuclear deformed tetrahedral [HgBr4]2– anions. In all three complexes the packing of the ions is such that halogen atoms of halomercurate anions complete a tetragonal bipyramidal coordination at Cu. The resulting Cu–Halogen distances are 2.924 Å for 1 , 3.036 Å for 2 and 3.085 and 3.119 Å for 3 . 1 : Space group P 1, Z = 1, lattice constants at 20 °C: a = 7.000(2), b = 7.526(2), c = 8.239(2) Å; α = 88.39(2), β = 86.06(2), γ = 86.10(3)°; R1 = 0.040. 2 : Space group P21/c, Z = 2, lattice constants at –50 °C: a = 7.185(1), b = 16.338(2), c = 7.814(1) Å; β = 94.88(2)°; R1 = 0.033. 3 : Space group P21/n, Z = 4, lattice constants at 20 °C: a = 8.055(3), b = 13.101(3), c = 13.814(3) Å; β = 91.24(3)°; R1 = 0.092.  相似文献   

3.
New Amido and Imido Bridged Complexes of Copper – Syntheses and Structures of [{Li(OEt2)}2][Cu(NPh2)3], [ClCuN(SnMe3)3], [{CuN(SnMe3)2}4], [Cu16(NH2tBu)12Cl16], [{CuNHtBu}8], [Li(dme)3][Cu6(NHMes)3(NMes)2], [PPh3(C6H4)CuNHMes], [{[Li(dme)][Cu(NHMes)(NHPh)]}2], and [{Li(dme)3}3][Li(dme)2][Cu12(NPh)8] The reactions of stannylated and lithiated amines with coppersalts (halogenides, thiocyanates) lead to amido and imido bridged complexes which contain one to twelve metal atoms. [{Li(OEt2)}2][Cu(NPh2)3] ( 1 ) results from the reaction of CuCl with LiNPh2 in the presence of trimethylphosphine. With N(SnMe3)3, CuCl reacts to the donor‐acceptor complex [ClCuN(SnMe3)3] ( 2 ) that is transformed into the tetrameric complex [{CuN(SnMe3)2}4] ( 3 ) by thermolysis. 3 can also be obtained by the reaction of LiN(SnMe3)2 with Cu(SCN)2. While terminally bound in 1 , the amido ligand is μ2‐bridging between copper atoms in compound 3 . The influence of the alkyl amide's leaving group can be seen from a comparison of the reactivity of Me3SnNHtBu and LiNHtBu, respectively. With Me3SnNHtBu, CuCl2 forms the polymeric compound [Cu16(NH2tBu)12Cl16] ( 4 ) whereas in the case of LiNHtBu with both CuCl and CuSCN, the complex [{CuNHtBu}8] ( 5 ) is obtained. The latter contains two planar Cu4N4‐rings similar to those in 3 . If a mesityl group is introduced at the lithium amide, different products are accessible. Both, CuBr and CuSCN, lead to the formation of [Li(dme)3][Cu6(NHMes)3(NMes)2] ( 6 ) whose anion consists of a prismatic copper core with μ2‐bridging amido and μ3‐bridging imido ligands. In the presence of PPh4Cl, a mixture of Cu(SCN)2 and LiNHMes enables an ortho‐metallation reaction that produces [PPh3(C6H4)CuNHMes] ( 7 ). From the reaction of CuSCN with LiNHMes and LiNHPh either the dimeric complex [{[Li(dme)][Cu(NHMes)(NHPh)]}2] ( 8 ) or the cluster [{Li(dme)3}3][Li(dme)2][Cu12(NPh)8] ( 9 ) results. The anion in 9 exhibits a cubo‐octahedron of copper atoms μ3‐bridged by (NPh)2–‐ligands. The solid state structures of compounds 1 – 9 have been determined by single crystal X‐ray diffraction.  相似文献   

4.
Hexakis(N—allylthiourea)tetracopper(I) Tetratrifluoromethanesulfonate, [Cu4{CH2=CHCH2NHC(S)NH2}6](CF3SO3)4 (sp.gr.P21/n, a = 13.5463(8), b = 24.129(2), c = 19.128(1)Å, β = 108.053(6)°, Z = 4, R = 0.0440 for 13548 unique reflections) was obtained by reduction of Cu(CF3SO3)2 with excess of N—allylthiocarbamide in benzene medium. Four crystallographical independent Cu atoms possess trigonal environment of three S atoms of CH2=CHCH2NHC(S)NH2 moiety and form Cu4S64+ adamantane—like fragments. The latteres are connected with CF3SO3 anions via (C)—H···F hydrogen bonds.  相似文献   

5.
Copper and Silver Clusters with Bridging Imido and Amido Ligands From the reactions of copper and silver chloride with tertiary phosphines and lithiated aniline the compounds [{Li(dme)3}4][Cu18(NPh)11] ( 1 ) and [Ag6(NHPh)4(PnPr3)6Cl2] ( 2 ) were obtained. The structure of the anion in 1 is closely related to the structures of the reported clusters [Cu12(NPh)8]4– [1] and [Cu24(NPh)14]4– [2]: 1 represents the third phenyl imido bridged copper cluster which contains parallel Cu3‐ and Cu6‐planes. The dimeric compound 2 consists of two Ag3 units with bridging phenyl amido ligands. Two chloride and six phosphine ligands complete the ligand sphere and shield the metal core effectively.  相似文献   

6.
A three‐dimensional cyano‐bridged copper(II) complex, [Cu(dien)Ag(CN)2]2[Ag2(CN)3][Ag(CN)2] ( 1 ) (dien = diethylenetriamine), has been prepared and characterized by X‐ray crystallography. Complex 1 crystallized in the monoclinic space group P21/n with a = 6.988(2), b = 17.615(6), c = 12.564(4) Å, β = 90.790(5)°. The crystal consists of cis‐[Cu(dien)]2+ units bridged by [Ag(CN)2] to form a zig‐zag chain. The Ag atoms of the free and bridging [Ag(CN)2] link together to form additional infinite zig‐zag chains with short Ag···Ag distances. The presence of Ag···Ag interactions effectively increases the dimensionality from a 1‐D chain to a 3‐D coordination polymer.  相似文献   

7.
Air and moisture sensitive K5[CuO2][CO3] was prepared via the azide/nitrate route from stoichiometric mixtures of the precursors CuO, KN3, KNO3 and K2CO3. According to the single‐crystal X‐ray analysis of the crystal structure [P4/nbm, Z = 2, a = 7.4067(5), c = 8.8764(8) Å, R1 = 0.053, 433 independent reflections] K5[CuO2][CO3] represents an ordered superstructure of Na5[NiO2][CO3]. The structure contains isolated [CuO2]3– dumbbells and CO32– anions, with the latter not connected to the transition element. Raman spectroscopic measurements confirm the presence of CO32– in the structure.  相似文献   

8.
在2-氨基噻唑存在下,利用铜粉和过氧化苯甲酰的氧比加成反应,在丙酮中合成了双核铜(Ⅱ)配合物[Cu_2(C_6H_5COO)_4(C_3H_4N_2S)2].晶体属单斜晶系,P21/n空间群,晶胞参数:a=1.0685(1)nm,b=1.9028(6)nm,c=1.7046(9)nm;α=γ=90°,β=96.49(3)°,V=3.443(4)nm~3,Z=4.F(000)=824,Dc=1.5558g/cm~3,μ=14.078cm~(-1),最终偏离因子R=0.04821,Rw=0.05314.通过元素分析、IR、TG、X射线粉末衍射表征了配合物的结构.  相似文献   

9.
A novel ligand, N,N′‐Bis‐[3‐(2‐nitrophenyl)‐allylidene]‐ethane‐1,2‐diamine (nca2en), and their corresponding copper(I) complexes, [Cu(ncaen)2]ClO4 ( 1 ), and [Cu(nca2en)(PPh3)2]BPh4 ( 2 ), have been synthesized and characterized by CHN analyses, 1H and 13C‐NMR, IR, and UV‐Vis spectroscopy. The crystal and molecular structures of [Cu(ncaen)2]ClO4 ( 1 ), and [Cu(nca2en)(PPh3)2]BPh4 ( 2 ), were determined by X‐ray crystallography from single‐crystal data. The coordination polyhedron about the copper(I) atom in the two complexes is best described as a distorted tetrahedron. A quasireversible redox behavior is observed for complex 1 and 2 (E1/2 = 0.55 and 0.95 V, respectively).  相似文献   

10.
The novel metalloid germanium cluster [Ge9(Hyp)2HypGe] ( 1 ) was synthesized, exhibiting two different bulky groups [Hyp = Si(SiMe3)3; HypGe = Ge(SiMe3)3]. Further reaction of 1 with ZnCl2 gives the derivative [ZnGe18(Hyp)4(HypGe)2] ( 2 ) in good yield, showing that the substitution of Si(SiMe3)3 by Ge(SiMe3)3 within a metalloid Ge9R3 compound leads to a comparable reactivity. 1 and 2 are characterized by NMR spectroscopy, mass spectrometry ( 1 ) and single crystal structure analyses ( 2 ). 1 and 2 are the first metalloid germanium clusters bearing germyl groups.  相似文献   

11.
A new diiron complex has been synthesized and characterized by X‐ray single crystal structural analysis: [FeII(phen)3][FeIII2OCl6]·2CH3CN. The complex crystallizes in the monoclinic system, space group C2/c, with lattice parameters a = 21.162(4) Å, b = 15.168(3) Å, c = 14.812(3) Å, β= 112.71 (3)°, V = 4385.8(15) Å3, Dx = 1.543 Mg/m3, Z = 4. The corresponding variable temperature susceptibility measurement shows that there exists an antiferromagnetic interaction in the complex.  相似文献   

12.
Syntheses and Crystal Structures of [Cu4(As4Ph4)2(PRR′2)4], [Cu14(AsPh)6(SCN)2(PEt2Ph)8], [Cu14(AsPh)6Cl2(PRR′2)8], [Cu12(AsPh)6(PPh3)6], [Cu10(AsPh)4Cl2(PMe3)8], [Cu12(AsSiMe3)6(PRR′2)6], and [Cu8(AsSiMe3)4(PtBu3)4] (R, R′ = Organic Groups) Through the reaction of CuSCN with AsPh(SiMe3)2 in the presence of tertiary phosphines the compounds [Cu4(As4Ph4)2(PRR′2)4] ( 1 – 3 ) ( 1 : R = R′ = nPr, 2 : R = R′ = Et; 3 : R = Me, R′ = nPr) and [Cu14(AsPh)6(SCN)2(PEt2Ph)8] ( 4 ) can be synthesised. Using CuCl instead of CuSCN results to the cluster complexes [Cu14(AsPh)6Cl2(PRR′2)8] ( 5–6 ) ( 5 : R = R′ = Et; 6 : R = Me, R′ = nPr), [Cu12(AsPh)6(PPh3)6] ( 7 ) and [Cu10(AsPh)4Cl2(PMe3)8] ( 8 ). Through reactions of CuOAc with As(SiMe3)3 in the presence of tertiary phosphines the compounds [Cu12(AsSiMe3)6(PRR′2)6] ( 9 – 11 ) ( 9 : R = R′ = Et; 10 : R = Ph, R′ = Et; 11 : R = Et, R′ = Ph) and [Cu8(AsSiMe3)4(PtBu3)4] ( 12 ) can be obtained. In each case the products were characterised by single‐crystal‐X‐ray‐structure‐analyses. As the main structure element 1 – 3 each have two As4Ph42–‐chains as ligands. In contrast 4 – 12 contain discrete AsR2–ligands.  相似文献   

13.
A hydrothermal reaction of a mixture of ZnO, HCl, ethylenediphosphonic acid, ethylenediamine, acetic acid in a water, THF mixture gave rise to a new three‐dimensional zinc ethylenediphosphonate, [NH3(CH2)2NH3][Zn3{O3P(CH2)2}4], I . The structure, determined by single crystal X‐ray diffraction, (monoclinic, space group = C2/c, a = 16.9948(14), b = 6.7383(6), c = 16.8886(14)Å, β = 1113.568(1)°, V = 1772.7(3)Å3, Z = 4, R1 = 0.0227, wR2 = 0.0601), consists of a network of strictly alternating ZnO4 and PO3C tetrahedral units linked through their vertices forming the three‐dimensional structure. The amine molecules occupy the middle of the 8‐membered channels and interact with the framework through the hydrogen bonds. Unlike other zinc diphosphonates, I appear to have close similarity to zinc phosphate structures reported in the literature. To our knowledge, this is the first three‐dimensional zinc diphosphonate prepared in the presence of an organic amine molecule.  相似文献   

14.
Ca5[Si2N6] and Ca7[NbSi2N9] were obtained by reaction of Ca3N2, Ca2N and Si3N4 (with addition of niobium powder in case of Ca7[NbSi2N9]) in closed tantalum ampoules at temperatures at 1060 °C and 1000 °C, respectively. Ca5[Si2N6] is monoclinic C2/c with a = 983.6(2) pm, b = 605.2(1) pm, c = 1275.7(3), β = 100.20(3)° and Z = 4 crystallising homotypically to Ba5[Si2N6]. The crystal structure contains pairs of edgesharing SiN4 tetrahedra forming isolated nitridosilicate anions of [Si2N6]10?. Ca7[NbSi2N9] is monoclinic P21/m with a = 605.1(1), b = 994.6(2), c = 899.7(2), β = 92.10(1)°, Z = 2 and crystallises in an hitherto unknown structure type. Ca7[NbSi2N9] contains isolated anions [NbSi2N9]14? which are composed of two edgesharing SiN4 tetrahedra and an edge‐sharing NbN5 pyramid. So far, such a pseudotrisilicate unit has not been observed in the family of silicates.  相似文献   

15.
以2[(η5-C5Me5)WS3(CuBr)3]2和diphenyl-2-pyridylphosphine (PPyPh2)在乙腈中反应得到标题化合物[(η5-C5Me5)WS3Cu3Br2(PPyPh2)2], 对该产物进行了元素分析、 IR、 UV-Vis和1H NMR 谱表征, 并测定了晶体结构. 该化合物晶体属三斜晶系, P1空间群, 晶胞参数: a=1.545 9(7) nm, b=1.62 0(1) nm, c=1.018 0(2) nm, α=94.18(3)°, β=97.38(3)°, γ=111.81(4)°, V=2.327(2) nm3, Z=2, Dc=1.84 g*cm-3, F(000)=1 260, μ=57.77 cm-1, 最终偏离因子R=0.029. 此簇合物结构可视为由一个[(η5-C5Me5)WS3]单元和3个Cu组成的开口立方烷, 其中2个Cu是畸变四面体配位, 第3个Cu是近似三角平面配位. W-Cu(1), W-Cu(2) 和W-Cu(3)距离分别为0.270 41(9), 0.273 27(8), 0.267 85(9) nm.  相似文献   

16.
The ligand, N,N′-bis-(4-methoxy-benzylidene)-ethane-1,2-diamine (mb2en), and its corresponding copper(I) complexes, [Cu(mb2en)2]ClO4 (1), and [Cu(mb2en)(PPh3)2]BPh4 (2), have been synthesized and characterized by CHN analyses, 1H and 13C-NMR, IR, and UV-Vis spectroscopies. The crystal and molecular structure of [Cu(mb2en)2]ClO4 (1), were determined by X-ray crystallography from a single-crystal. The coordination polyhedron about copper(I) is best described as a distorted tetrahedron. Quasi-irreversible redox behavior was observed for 1 and 2 (E 1/2?=?0.55 and 0.95?V, respectively).  相似文献   

17.
1INTRODUCTIONTheNi(dmit)2moleculesgiverisetoanumberofmolecularconductors〔1,2〕inadditiontosuperconductors〔3,4〕.Themultysulfurf...  相似文献   

18.
The reaction of CuCl, LiAs(SiMe3)2 and dppb (Bis(diphenylphosphino)butane) leads to the formation of ionic cluster complexes. Depending on the reaction conditions one can isolate [Cu8As3(AsSiMe3)2(dppb)4]+[Cu{As2(SiMe3)2}{As4(SiMe3)4}] ( 1 ) and [Cu8As3(AsSiMe3)2(dppb)4]+[Cu{As(SiMe3)2}2] ( 2 ). The same reaction of CuCl, dppm (Bis(diphenylphosphino)methane) and LiSb(SiMe3)2 leads to the neutral cluster complex [Cu10(Sb3)2(SbSiMe3)2(dppm)6] ( 3 ). The structures of 1‐3 have been solved by X‐ray single crystal analyses.  相似文献   

19.
Single crystals of [Fe(Cp)2]3(Bi2Cl9)·thf were obtained from a thf solution containing ferrocene and BiCl3. The structure shows disorder at room temperature which disappears upon cooling, coupled with a decrease in symmetry. The title compound crystallizes in the orthorhombic space group P212121 [a = 1698.64(2), b = 2318.69(3), c = 1085.66(2) pm] with three ferrocenium ions, one nonachlorodibismutate ion and one molecule of thf in the asymmetric unit.  相似文献   

20.
2-Chloro-N-{2-fluoro-5-[N-(phenylsulfonyl)phenylsulfonamido]phenyl}benzamide was synthesized and its crystal structure was also determined by X-ray single-crystal diffraction. The title compound(C25H18C1FN2O5S2) belongs to monoclinic, space group P21/n with a=0.7377(3) nm, b=1.2036(5) nm, c=2.6846(11) nm, β=90.895(9)°,V=2.3833(16) nm3, Mr=544.98, Z=4, Dc= 1.519 g/cm3, μ=0.385 mm-1, F(000)=1120, R1=0.0632, and wR2=0. 1438. Its crystal structure belongs to a novel class that has not been reported yet, and its preliminary herbicidal activity was also tested. Its inhibition rate to seedling growth of barnyard grass reaches 15.1% at 100 μg/mL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号