首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pyridine‐2(1H)‐thiones were prepared and reacted with several active halogenated reagents to afford novel thieno[2,3‐b]pyridines in excellent yields. Thieno[2,3‐b]pyridine‐2‐carbohydrazide derivative was prepared by the reaction of either ethyl 2‐((3‐cyanopyridin‐2‐yl)thio)acetate derivative or thieno[2,3‐b]pyridine‐2‐carboxylate derivative with hydrazine hydrate. On the other hand, the reaction of either pyridine‐2(1H)‐thione or ethyl 2‐((pyridin‐2‐yl)thio)acetate derivative with hydrazine hydrate afforded the corresponding 1H‐pyrazolo[3,4‐b]pyridine derivative. Thieno[2,3‐b]pyridine derivatives reacted with several reagents to afford the corresponding pyrimidine‐4(3H)‐ones and [1,2,3]triazin‐4‐(3H)‐one. Moreover, 2‐carbohydrazide derivative reacted with β‐dicarbonyl reagents to give 2‐((3‐methyl‐1H‐pyrazol‐1‐yl)carbonyl)thienopyridines. The structure of the target molecules is elucidated using elemental analyses and spectral data.  相似文献   

2.
6‐Aminopyridine‐2(1H)thiones 1 reacting with α‐halo‐compounds 2a–c afforded the alkylthiopyridine derivatives 3a–c which in turn cyclized to the corresponding thieno[2,3‐b]pyridine derivatives 4a–c . Several thieno[2,3‐b]pyridine derivatives 7, 16, 19 , pyrido[3′,2′:4,5]thieno[3,2‐d]pyrimidine derivatives 6a,b, 11a–c, 21 and pyrido[3′,2′:4,5]thieno[3,2‐c]pyridazine derivatives 13, 17 were prepared starting from compounds 4a–c . © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:405–413, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20313  相似文献   

3.
Reacting 1,3‐diphenyl‐propan‐2‐one with equimolecular amount of dimethylformamide dimethylacetal afforded the enaminone 4. This when reacted with another equimolecular amount of dimethylformamide dimethylacetal afforded the dienaminone 5. Compound 4 condenses with cyanothioacetamide and with cyanoacetamide to yield 2‐thioxo‐ and 2‐oxo‐pyridine‐3‐carbonitrile derivatives 6a,b respectively. Compound 6a reacted with α‐chloroacetone 8 to yield the thieno[2,3‐b]pyridine derivative 10 that cyclized further into 4,7,8‐trisubstituted pyrido[2′,3′:2,3] thieno[4,5‐d]pyrimidine 12. Compound 4 also afforded 2,5,6‐trisubstituted nicotinic acid ethyl ester 13 by reaction with ethyl acetoacetate in acetic acid in the presence of ammonium acetate. The dienaminone 5 reacted with acetic acid, ammonium acetate/acetic acid, phenylhydrazine and 5‐amino‐3‐methylpyrazole yielding 3,5‐diphenyl‐pyran‐4‐one 15a , 3,5‐diphenyl‐1H‐pyridin‐4‐one 15b and 1,3,5‐trisubstituted pyridin‐4‐ones 16a‐b.  相似文献   

4.
Diethyl 2‐[(ethoxythioxomethyl)amino]‐4,5,6,7‐tetrahydrothieno[2,3‐c]‐pyridine‐3,6‐dicarboxylate 2 , prepared from diethyl 2‐isothiocyanato‐4,5,6,7‐tetrahydrothieno[2,3‐c]pyridine‐3,6‐dicarboxylate 1 by boiling in anhydrous ethanol, was converted into pyrido[4′,3′:4,5]thieno[2,3‐d]pyrimidine derivatives 3, 4 by treatment with hydrazine hydrate. The tetracyclic systems imidazo[1,2‐a]pyrido‐[4′,3′:4,5]thieno[2,3‐d]pyrimidine 9 and pyrido[4′,3′:4,5]thieno[2,3‐d][1,3]thiazolo‐[3,2‐a]pyrimidine 10 were synthesized by the reaction of 2 with 1,2‐diaminoethane and aminoethanethiol, respectively. The hydrazino derivative 4 underwent cyclization reactions with orthoesters and nitrous acid to give the corresponding pyrido[4′,3′:4,5]thieno[2,3‐d][1,2,4]triazolo[1,5‐a]pyrimidines 5, 6 and pyrido[4′,3′:4,5]thieno[3,2‐e][1,2,3,4]tetrazolo[1,5‐a]pyrimidine 8 , respectively. Moreover, reactions of 3 with cyanogen bromide, N‐carbethoxyhydrazine, carbon disulfide, and ethylchloroformate resulted in the formation of the new pyrido[4′,3′:4,5]thieno[2,3‐d][1,3,4]thiadiazolo[3,2‐a]pyrimidine derivatives 12–15 . © 2002 Wiley Periodicals, Inc. Heteroatom Chem 13:280–286, 2002; Published online in Wiley Interscience (www.interscience.wiley.com). DOI 10.1002/hc.10030  相似文献   

5.
6‐Aminopyridine‐2(1H)‐thiones 1a,b reacted with dimethylformamide‐dimethylacetal (DMF‐DMA) to give the corresponding 6‐{[(N,N‐dimethylamino)methylene]amino}pyridine derivatives 2a,b . The latter compounds reacted with hydrazine hydrate to afford the 3,6‐diamino‐1H‐pyrazolo[3,4‐b]pyridine derivative 4 and 3‐amino‐5‐hydrazino‐1H‐pyrazolo[4′,3′:5,6]pyrido[2,3‐d]pyrimidine derivative 7 , respectively. Compound 4 condensed with DMF‐DMA to yield the 3,6‐bis{[(N,N‐dimethylamino)methylene]amino}‐1H‐pyrazolo[3,4‐b]pyridine derivative 10 , which reacted with malononitrile to give the corresponding pyridopyrazolopyrimidine derivative 15 . © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:399–404, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20312  相似文献   

6.
Pyrano[4,3‐d]pyrimidine derivative 3 was prepared by reaction of chlorocarbonyl isocyanate 1 with enaminonitrile 2 . Compound 3 reacted with nitrogen nucleophiles 4a‐f to afford 2‐substituted pyrido[4,3d]pyrimidine 5–8 , pyrimido[i]1,5a‐diaza‐9‐oxafluorene 9 and pyrimido[i]5a‐aza‐9‐thiafluorene 10 derivatives. Also, compound 3 reacted with active methylene compounds 4j to yield pyrimidine derivatives 14–16 which on reaction with EtONa 4k afforded 1,5,7‐triaza‐10‐oxaphenanthrene derivatives 17–19 .  相似文献   

7.
2‐Aminopyridine‐3‐carbonitrile derivative 1 reacted with each of malononitrile, ethyl cyanacetate, benzylidenemalononitrile, diethyl malonate, and ethyl acetoacetate to give the corresponding [1,8]naphthyridine derivatives 3 , 5 , 8 , 11 , and 14 , respectively. Further annulations of 3 , 5 , and 8 gave the corresponding pyrido[2,3‐b][1,8]naphthyridine‐3‐carbonitrile derivative 17 , pyrido[2,3‐h][1,6]naphthyridine‐3‐carbonitrile derivatives 18 and 19 , respectively. The reaction of 1 with formic acid, formamide, acetic anhydride, urea or thiourea, and 4‐isothiocyanatobenzenesulfonamide gave the pyridopyrimidine derivatives 20a , b , 21 , 22a , b , and 26 , respectively. Treatment of compound 1 with sulfuric acid afforded the amide derivative 27 . Compound 27 reacted with 4‐chlorobenzaldehyde and 1H‐indene‐1,3(2H)‐dione to give the pyridopyrimidine derivative 28 and spiro derivative 30 , respectively. In addition, compound 1 reacted with halo compounds afforded the pyrrolopyridine derivatives 32 and 34 . Finally, treatment of 1 with hydrazine hydrate gave the pyrazolopyridine derivative 35 . The structures of the newly synthesized compounds were established by elemental and spectral data.  相似文献   

8.
6‐(2‐Thienyl)‐4‐(trifluoromethyl)‐1H‐pyrazolo[3,4‐b]pyridine‐3‐amine reacted with different active methylene compounds to afford pyridopyrazolopyrimidine derivatives. On the other hand, it reacted with some halo compounds to give the imidazo[1′,2′:1,5]pyrazolo[3,4‐b]pyridine derivatives. Also, it diazotized to give the corresponding diazonium chloride that is coupled with several active methylene compounds to give the corresponding triazine derivatives. Furthermore, compound 3‐amino‐6‐(2(thienyl)‐4‐(trifluoromethyl)thieno[2,3‐b]pyridine‐2‐carbohydrazide reacted with some β‐dicarbonyl compounds and some sulfur‐containing compounds to afford the corresponding pyrazolyl oxadiazolylthieno[2,3‐b]pyridine derivatives.  相似文献   

9.
Pyridine-2(1H)-thione 5 was synthesized from the reaction of 3-[3-(4-chlorophenyl)-1-phenyl-1H-pyrazol-4-yl]-1-phenylpropenone (3) and cynothioacetamide (4). Compound 5 reacted with halogented compounds 6a–e to give 2-S-alkylpyridine derivatives 7a–e, which could be in turn cyclized into the corresponding thieno[2,3-b]-pyridine derivatives 8a–e. Compound 8a reacted with hydrazine hydrate to give 9. The latter compound reacted with acetic anhydride (10a), formic acid (10b), acetic acid, ethyl acetoacetate, and pentane-2,4-dione to give the corresponding pyrido[3′,2′:4,5]thieno-[3,2-d]pyrimidine 13a,b, pyrazolo[3′,4′:4,5]thieno[3,2-d]pyridine 14 and thieno[2,3-b]-pyridine derivatives 18 and 20, respectively. Alternatively, 8c reacted with 10a,b and nitrous acid to afford the corresponding pyrido[3′,2′:4,5]thieno[3,2-d]pyrimidine 24a,b and pyrido[3′,2′:4,5]thieno[3,2-d][1,2,3]triazine 26 derivatives, respectively. Finally compound 5 reacted with methyl iodide to give 2-methylthiopyridine derivative 27, which could be reacted with hydrazine hydrate to yield the corresponding pyrazolo[3,4-b]-pyridine derivative 29.  相似文献   

10.
6‐Aryl‐5‐cyano‐4‐pyrimidinone‐2‐thion derivatives 1a‐c reacted with methyl iodide (1:2) to give the corresponding 2‐S,N‐dimethyl pyrimidine‐4‐one derivatives 2a‐c . Compounds 2a‐c were in turn, reacted with hydrazine hydrate to give the sulfur free reaction products 3a‐c . These reaction products were taken as the starting materials for the synthesis of several new heterocyclic derivatives. Reaction of 3a‐c with acetic anhydride and formic acid gave pyrimido triazines 4a‐c and 7a‐c , respectively. Their reactions with active methylene containing reagents gave the corresponding 2‐(1‐pyrazonyl)‐N‐methyl pyrimidine derivatives 9a‐c and 10a‐c , respectively. Their reactions with aromatic aldehydes afforded the corresponding 2‐hydrazono pyrimidine derivatives 11a‐c . The structure of these reactions products were established based on both elemental analysis and spectral data studies.  相似文献   

11.
Under phase transfer catalysis conditions, 6‐amino‐4‐phenyl‐2‐thioxo‐1,2‐dihydropyridine‐3,5‐dicarbonitrile ( 1 ) was allowed to react with halo compounds, acrylonitrile, chloroacetyl chloride, ethyl cyanoacetate, formamide, triethylorthoformate, or formic acid to give new derivatives of fused pyridines 2–22, respectively. Acetylation of compound 1 using acetic anhydride afforded product 23 , which in turn underwent intramolecular cyclization in pyridine to give the corresponding pyrido[2,3‐d]pyrimidine 24 .  相似文献   

12.
The reaction of 3‐amino‐4,6‐dimethylthieno[2,3‐b]pyridine‐2‐carboxamide (1a) or its N‐aryl derivatives 1b‐d with carbon disulphide gave the pyridothienopyrimidines 2a‐d , whilst when the same reaction was carried out using N1‐arylidene‐3‐amino‐4,6‐dimethylthieno[2,3‐b]pyridine‐2‐carbohydrazides (1e‐h) , pyridothienothiazine 3 was obtained. Also, refluxing of 1b‐d with acetic anhydride afforded oxazinone derivative 4 . Compounds 2a and 2b‐d were also obtained by the treatment of thiazine 3 with ammonium acetate or aromatic amines, respectively. When compound 2a was allowed to react with arylidene malononitriles or ethyl α‐cyanocinnamate, novel pyrido[3″,2″:4′,5′]thieno[3′,2′:4,5]pyrimido[2,1‐b][1,3] thiazines 5a‐c were obtained. Treatment of 2b‐d with bromine in acetic acid furnished the disulphide derivatives 6a‐c . U.V. irradiation of 2b‐d resulted in the formation of pyrido[3″,2″:4′,5′]thieno[3′,2′:4,5]pyrimido[2,1‐b]benzthiazoles 7a‐c . The reaction of 2a‐d with some halocarbonyl compounds afforded the corresponding S‐substituted thiopyrido thienopyrimidines 8a‐j . Compound 8b was readily cyclized into the corresponding thiazolo[3″,2″‐a]‐pyrido[3′,2′:4,5]thieno[3,2‐d]pyrimidine 9 upon treatment with conc. sulphuric acid. Heating of 2a,b with hydrazine hydrate in pyridine afforded the hydrazino derivatives 11a,b . Reaction of ester 8c with hydrazine hydrate in ethanol gave acethydrazide 10 . Compounds 10 and 11a,b were used as versatile synthons for other new pyridothienopyrimidines 12–15 as well as [1,2,4] triazolopyridothienopyrimidines 16–19.  相似文献   

13.
The reaction of 3‐acetyl‐4‐hydroxyl‐1‐methylquinolin‐2(1H )‐one (1) with 10‐oxo‐4,6,7,8,9,10‐hexahydropyrazolo[1,5‐a ][1]benzothieno[2,3‐d ]pyrimidine‐3‐carbaldehyde (2) afforded the novel enone system 3 . The latter compound was reacted with some 1,2‐binucleophilic reagents to give pyrazoline derivative 4 and isoxazoline derivative 5 . Treatment of chalcone 3 with 1,3‐binucleophilic reagents afforded pyrimidine and thiazine derivatives 6 – 8 . Moreover, reaction of compound 3 with active methylene reagents furnished pyridine, pyran, and cyclohexanone derivatives 9 – 12 . Cyclization of compound 12 by using hydrazine hydrate yielded indazol‐3‐one derivative 13. On the other hand, the cyclocondensation of the enone 3 with 1,4‐dinucleophilic reagents yielded diazepine derivative 14 and triazolothiadiazepine derivative 15 .The characterization of the newly synthesized heterocyles were confirmed on the basis of their elemental analysis and spectral data (IR, NMR, and MS). These compounds were also screened for their antibacterial activities.  相似文献   

14.
2‐Amino‐3‐cyano‐4,5,6,7‐tetrahydrobenzo[b]thiophene 1a or 2‐amino‐3‐cyano‐4,7‐di‐ phenyl‐5‐methyl‐4H‐pyrano[2,3‐c]pyrazole 2a reacted with phenylisocyanate in dry pyridine to give 2‐(3‐phenylureido)‐3‐cyanobenzo[b]thiophene 1b or 2‐disubstituted amino‐3‐cyanopyranopyrazole 2b derivative. However, when 1a and 2a were refluxed with carbon disulfide in 10% ethanolic sodium hydroxide solution, they afforded the thieno[2,3‐d]pyrimidin‐2,4‐dithione derivative 5 in the former case, 2,4‐dicyano‐1,3‐bis(dithio carboxamino)cyclobuta‐1,3‐ diene 6 and pyrazolopyranopyrido[2,3‐d]pyrimidin‐ 2,4‐dithione derivative 7 in the latter one. Treatment of 2a with thiourea in refluxing ethanol in the presence of potassium carbonate gave 2,2′‐dithiobispyrimidine derivative 9 (major) in addition to pyranopyrazole derivative 10 and 2,2′‐dithiobis ethoxypyrimidine derivative 11 in minor amounts. The structures of all products were evidenced by microanalytical and spectral data. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:6–11, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20070  相似文献   

15.
Pyridopyrimidine reacted with aromatic aldehydes afforded the arylhydrazone 2a,b which could be cyclized into the pyrido[2,3‐d][1,2,4]triazolo[4,3‐a]pyrimidine 3a,b , with formic acid, and carbon disulphide to give pyrido[2,3‐d][1,2,4]traizolo[4,3‐a]pyrimidine 4, 5. Reaction of 1 with nitrous acid afforded tetrazolo[1,5‐a]pyrido[2,3‐d]pyrimidine 6 , which was reduced by zinc dust to give 2‐amino‐pyrido‐[2,3‐d]pyrimidine 7. Finally the reaction of 2‐hydrazino 1 with D‐xylose or D‐glucose afforded the acyclic N‐nucleoside 8, 11 which were converted into tetra/penta O‐acetate acyclic C‐nucleoside 9, 12 in acetic anhydride/pyridine. De‐acetylation of compounds 9, 12 afforded C‐nucleosides 10, 13.  相似文献   

16.
p‐Diacetyl benzene 1 undergoes bromination to afford p‐bromoacetyl phenacyl bromide 2 . Compound 2 reacts with twofold excess of malononitrile to afford 2‐{2‐[4‐(3,3‐Dicyanopropionyl)‐phenyl]‐2‐oxo‐ethyl}‐malononitrile 3 . Compound 3 could be cyclized to afford the 1,4‐phenylene‐bis‐furan derivative 4 . Compound 3 reacts also with a twofold excess of hydrazine hydrate and phenyl hydrazine under dry conditions at RT to afford the bis‐pyrazole derivatives 5a , 5b , respectively. The reaction of 5a , 5b with the same reagents in refluxing dioxane afforded the bis‐pyrazolopyridazine derivatives 7a , 7b , respectively. The azo coupling of compound 3 with arene diazonium salts afforded the bis‐pyrazole derivatives 9a , 9b , 9c . The β‐keto esters 10a , 10b react with benzaldehyde and malononitrile in a one pot synthesis to afford the pyran derivatives 11a , 11b . These latter compounds react with hydrazine hydrate and urea derivatives to afford the pyrano[2,3‐c]pyrazoles 15a , 15b and the pyrano[2,3‐d]pyrimidine derivatives 17a , 17b , respectively.  相似文献   

17.
Convenient syntheses of 3‐substituted ethyl 4‐oxo‐2‐thioxo‐1,2,3,4,5,6,7,8‐octahydropyrid[4′,3′:4,5]thieno[2,3‐d]pyrimidine‐7‐carboxylates 3a, b, 6, 11–13 , ethyl 3‐methyl‐5‐oxo‐2,3,6,9‐tetrahydro‐5 H‐pyrido[4′,3′:4,5]thieno[2,3‐d][1,3]thiazolo[3,2‐a]pyrimidine‐8‐7H‐carboxylate ( 4 ), and ethyl 2‐methyl‐5‐oxo‐2,3,6,9‐tetrahydro‐5H‐pyrido[4′,3′:4,5]thieno[2, 3‐d][1,3]thiazolo[3,2‐a]pyrimidine‐8[7H]carboxylate ( 8 ) from diethyl 2‐isothiocyanato‐4,5,6,7‐tetrahythieno[2,3‐c]pyridine‐3,6‐dicarboxylate ( 1 ) are reported. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:201–207, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10131  相似文献   

18.
Treating 5‐(4‐phenylcarboxamido)‐3‐cyano‐4‐methylpyridin‐2(1H)thione ( 3 ) with elemental sulfur yielded thienopyridine 4 . Compound 4 reacts with acrylonitrile to give isoquinoline 7 . Compound 7 was also, prepared from 3 and methylenemalononitrile. Reaction of 3 with dimethylacetylene dicarboxylate (DMAD) gave the pyridothiazole 9 . Also, 3 reacted with N,N‐dimethylchloroacetamide ( 10 ) to afford compound 11 which further reacted with the reagents 12 , 13 and 14 providing the thieno[2,3‐b]pyridine derivatives 15 , 16 and 17 respectively.  相似文献   

19.
The starting materials pyridine‐2(1H)‐thiones are prepared and reacted with halogen‐containing reagents in ethanolic sodium acetate solution to give the corresponding 2‐S‐alkylpyridines, which cyclized upon their boiling in methanolic sodium methoxide solution at reflux to give the corresponding thieno[2,3‐b]pyridines in excellent yields. Bis (thieno[2,3‐b]pyridine‐2‐carboxamides), incorporating 2,6‐dibromophenoxy moiety, are prepared by the bis‐O‐alkylation of thieno[2,3‐b]pyridine‐2‐carboxamide derivatives. Two synthetic routes are designed to prepare the target molecules pyrido[3′,2′:4,5]thieno[3,2‐d]pyrimidin‐4(3H)‐ones, pyrido[3′,2′:4,5]thieno[3,2‐d][1,2,3]triazin‐4(3H)‐ones, and their bis‐analogues using thieno[2,3‐b]pyridine‐2‐carboxamides and their bis‐analogues. The structure of the target molecules is elucidated using elemental analyses as well as spectral data.  相似文献   

20.
5‐Acetyl‐3‐amino‐4‐aryl‐6‐methylthieno[2,3‐b]pyridine‐2‐carboxamides ( 5a,b ) were reacted with triethyl orthoformate or nitrous acid to give the corresponding pyrimidinones 6a,b and triazinones 7a,b . The reaction of 5a,b with acetic anhydride was carried out and its products were identified as a mixture of 8‐acetyl‐9‐aryl‐2,7‐dimethylpyrido[3′,2′:4,5]thieno[3,2‐d]pyrimidine‐4(3H)‐one ( 9a,b ) and related 5‐acetyl‐4‐aryl‐3‐biacetylamino‐6‐methylthieno[2,3‐b]pyridine‐2‐carbonitrile ( 10a,b ). Reaction of 7a with some halocompounds afforded the N‐alkylated triazinones 8a‐c . Chlorination of 6a,b and 9a,b with phosphorus oxychloride produced 4‐chloropyrimidines 11a‐d which were used as precursors for the rest of the target heterocycles. Some of the prepared compounds were tested in vitro for their antimicrobial activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号