首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
There is no comprehensive model for the dynamics of cellular membranes. Even mechanisms of basic dynamic processes, such as lateral diffusion of lipids, are poorly understood. Our atomic-scale molecular dynamics simulations support a novel, concerted mechanism for lipid diffusion. We find that a lipid and its nearest neighbors move in unison, forming loosely defined clusters. What is more, the motions of lipids are correlated over tens of nanometers: the lateral displacements of lipids in a given monolayer produce striking two-dimensional flow patterns. These flow patterns should have wide implications, affecting, for example, the formation of membrane domains, protein functionality, and action of lipases and drugs on membranes.  相似文献   

2.
The capillary pore model of water-swollen gels was used to interpret solute diffusion through gel chitosan membranes. Diffusive permeability coefficients of 12 solutes ranging in molecular radius from 2.5 Å (methanol) to 14 Å (polyethylene glycol 4000) were measured for an untreated chitosan membrane, for four chitosan membranes crosslinked with glutaraldehyde of concentrations between 0.01 and 1% and coated with a protein and also, for comparison, for a commercial Cuprophan membrane. Through the capillary pore-model correlation of the above coefficients with the membrane water content, the following structural factors of the examined membranes were calculated: pore radius, surface porosity and tortuosity factor. Knowledge of these factors is required if the desired membranes are to be designed for a given application (e.g. dialysis).  相似文献   

3.
The model of permeation through membranes used in this paper consists of representing the membrane as an impermeable slab perforated by N circular cylinders (pores), the permeation rate being controlled by the rate at which penetrant diffuses through the membrane. Employing a Green's function approach for the local concentration leads to a simple expression for the flow through each pore. The limit N → ∞ has to be treated carefully, and this is worked out in detail for a membrane with regularly distributed pores. Our results show that the details of the actual pore distribution do enter into the results. For the case of small area fraction of penetration sites, explicit results for the membrane permeability are obtained and serve as an estimate for the error involved in the customary cell method.  相似文献   

4.
We have used atomically detailed simulations to examine the adsorption and transport diffusion of CO2 and N2 in single-walled carbon nanotubes at room temperature as a function of nanotube diameter. Linear and spherical models for CO2 are compared, showing that representing this species as spherical has only a slight impact in the computed diffusion coefficients. Our results support previous predictions that transport diffusivities of molecules inside carbon nanotubes are extremely rapid when compared with other porous materials. By examining carbon nanotubes as large as the (40,40) nanotube, we are able to compare the transport rates predicted by our calculations with recent experimental measurements. The predicted transport rates are in reasonable agreement with experimental observations.  相似文献   

5.
The possible formation of statistical pores through black lipid membranes may constitute a new mechanism for the explanation of transversal diffusion of lipid molecules through bilayers. In this work, we calculate the flip-flop diffusion coeficient, which is related to the mean number of statistical pores formed on the planar bilayer and the lateral diffusion coeficient. Its approximately calculated value is: Dff = 10−3 m2 s−1.  相似文献   

6.
Diffusion of Triton X-100 through Celgard 2500 membranes was examined. The pore permeability for monomers was 5.0 × 10−6 cm2/sec and it was measured for upstream concentrations below the CMC value of 2.29 × 10−4M at 30°C. This value is close to the monomer diffusion coefficient in bulk suggesting that the monomers do not experience significant hindrance due to the pore walls. The permeability of the surfactant drops abruptly within a narrow range of reservoir solution concentrations in the vicinity of the CMC. At concentrations 10 × CMC, the permeability coefficient becomes constant and equal to 3.9 × 10−7 cm2/sec which is the pore permeability for the Triton X-100 micelles. Compared to the diffusion coefficient of micelles in bulk water, the transport of micelles is hindered by the pore walls. In a 10-fold concentration range the micellar pore permeability is practically constant indicating no large change in micelle size. The chemical equilibrium model applied to surfactant diffusion in pores shows reasonable agreement over the entire range of the experimental data for reservoir concentrations from one-fifth times the CMC to 100 times the CMC.  相似文献   

7.
The influence of the microstructures of different kappa-carrageenan gels on the self-diffusion behavior of poly(ethylene glycol) (PEG) has been determined by nuclear magnetic resonance (NMR) diffusometry and transmission electron microscopy (TEM). It was found that the diffusion behavior was determined mainly by the void size, which in turn was defined by the state of aggregation of the kappa-carrageenan. The kappa-carrageenan concentration was held constant at 1 w/w%, and the aggregation was controlled by the amount of potassium and/or sodium chloride and, for samples containing potassium, also by the cooling rate. Gels containing potassium formed microstructures where kappa-carrageenan strands are rather evenly distributed over the image size, while sodium gels formed dense biopolymer clusters interspersed with large openings. In a gel with small void sizes, relatively slow diffusion was found for all PEG sizes investigated. Extended studies of the self-diffusion behavior of the 634 g mol(-)(1) PEG showed that there is a strong time dependence in the measured PEG diffusion. An asymptotic lower time limit of the diffusion coefficient was found in all gels when the diffusion observation time was increased. According to the ratio, D/D(0), where D(0) is the diffusion coefficient in D(2)O and D is the diffusion coefficient in the gels, the gels could be divided into three classes: small, medium, and large voids. For quenched kappa-carrageenan solutions with salt concentrations of 20 mM K(+), 100 mM K(+), or 20 mM K(+)/200 mM Na(+) as well as slowly cooled solutions with only 20 mM K(+), D/D(0) ratios between 0.18 and 0.29 were obtained. By quenching a kappa-carrageenan solution with 100 mM K(+), the D/D(0) was 0.5, while D/D(0) ratios between 0.9 and 1 were obtained in a quenched solution with 250 mM Na(+) and slowly cooled samples with 20 mM K(+)/200 mM Na(+) or 250 mM Na(+).  相似文献   

8.
Transport mechanisms through nanofiltration membranes are investigated in terms of contribution of convection, diffusion and migration to electrolyte transport. A Donnan steric pore model, based on the application of the extended Nernst-Planck equation and the assumption of a Donnan equilibrium at both membrane-solution interfaces, is used. The study is focused on the transport of symmetrical electrolytes (with symmetric or asymmetric diffusion coefficients). The influence of effective membrane charge density, permeate volume flux, pore radius and effective membrane thickness to porosity ratio on the contribution of the different transport mechanisms is investigated. Convection appears to be the dominant mechanism involved in electrolyte transport at low membrane charge and/or high permeate volume flux and effective membrane thickness to porosity ratio. Transport is mainly governed by diffusion when the membrane is strongly charged, particularly at low permeate volume flux and effective membrane thickness to porosity ratio. Electromigration is likely to be the dominant mechanism involved in electrolyte transport only if the diffusion coefficient of coions is greater than that of counterions.  相似文献   

9.
We consider the properties of free pyrene probes inside gel- and fluidlike phospholipid membranes and unravel their influence on membrane properties. For this purpose, we employ atomic-scale molecular dynamics simulations at several temperatures for varying pyrene concentrations. Molecular dynamics simulations show that free pyrene molecules prefer to be located in the hydrophobic acyl chain region close to the glycerol group of lipid molecules. Their orientation is shown to depend on the phase of the membrane. In the fluid phase, pyrenes favor orientations where they are standing upright in parallel to the membrane normal, while, in the gel phase, the orientation is affected by the tilt of lipid acyl chains. Pyrenes are found to locally perturb membrane structure, while the nature of perturbations in the gel and fluid phases is completely different. In the gel phase, pyrenes break the local packing of lipids and decrease the ordering of lipid acyl chains around them, while, in the fluid phase, pyrenes increase the ordering of nearby acyl chains, thus having an opposite effect. Interestingly, this proposes a similarity to effects induced by cholesterol on structural membrane properties above and below the gel-fluid transition temperature. Further studies express a view that the orientational ordering of pyrene is not a particularly good measure of the acyl chain ordering of lipids. While pyrene ordering provides the correct qualitative behavior of acyl chain ordering in the fluid phase, its capability to predict the correct temperature dependence is limited.  相似文献   

10.
荧光探针法研究壳聚糖水凝胶形成过程及其性能   总被引:5,自引:0,他引:5  
基于芘(Py)单体荧光光谱结构对微观环境变化的敏感性,以及介质粘度及Py分子间距对Py激基络缔合物形成的影响,以戊二醛交联壳聚糖(CS)水凝胶体系为例研究了Py荧光探针法监测水凝胶形成过程及其溶胀性能的可行性。结果表明,Py荧光光谱精细结构的变化(以I~3/I~1为参量)或Py激基缔合物荧光强度与单体荧光强度之比(I~E/I~M)的变化与CS水凝胶的形成及溶胀程度有很好的对应关系。此外,CS凝胶网状结构中包埋的聚N-异丙基丙烯酰胺(PNIPAM)的构象变化也可由探针光谱变化反映出来。利用这种荧光探针方法有助于从分子水平上探知凝胶形成过程的微观本质。此外,这种方法也可作为光纤传导监测凝胶形成过程和溶胀的基础。  相似文献   

11.
Diffusion based separations are essential for laboratory and clinical dialysis processes. New molecularly thin nanoporous membranes may improve the rate and quality of separations achievable by these processes. In this work we have performed protein and small molecule separations with 15 nm thick porous nanocrystalline silicon (pnc-Si) membranes and compared the results to 1- and 3- dimensional models of diffusion through ultrathin membranes. The models predict the amount of resistance contributed by the membrane by using pore characteristics obtained by direct inspection of pnc-Si membranes in transmission electron micrographs. The theoretical results indicate that molecularly thin membranes are expected to enable higher resolution separations at times before equilibrium compared to thicker membranes with the same pore diameters and porosities. We also explored the impact of experimental parameters such as porosity, pore distribution, diffusion time, and chamber size on the sieving characteristics. Experimental results are found to be in good agreement with the theory, and ultrathin membranes are shown to impart little overall resistance to the diffusion of molecules smaller than the physical pore size cutoff. The largest molecules tested experience more hindrance than expected from simulations indicating that factors not incorporated in the models, such as molecule shape, electrostatic repulsion, and adsorption to pore walls, are likely important.  相似文献   

12.
Two types of unsupported zeolites (silicalite-1 and silicalite-2) and porous alumina discs supports were prepared by the hydrothermal sol–gel synthesis method. The influence of the raw materials used as SiO2 source, the temperature of the thermal treatment and the presence of the ceramic support on the crystallization of zeolites were studied. The reaction products were characterized by X-ray diffraction (XRD), IR spectroscopy (IR) and scanning electron microscopy (SEM) studies. The SiO2 source had a significant effect on the final zeolite obtained: the use of colloidal silica sol (ZCS) as SiO2 source in the synthesis led to ZSM-11 (silicalite-2) crystals, while the sodium silicate solution (ZSS) produced the ZSM-5 (silicalite-1) type. The presence of the alumina support influences the crystallization process of ZSM-5, as it improves nucleation and the ordering of the crystals.  相似文献   

13.
The universal calibration for gel permeation chromatography (GPC) has been applied to amylose and dextrans. The molecular weight distribution of amylose has been measured starting from known data on dextrans. The agreement found between the molecular weight averages resulting from GPC and those obtained by other methods justifies the procedure followed. The GPC measurements were performed with dimethylsulfoxide as the elution solvent and deactivated silica gel (Porasil) as the column-filling material.  相似文献   

14.
We describe the differential permeation method for the study of the diffusion of solvents from a liquid (or liquid mixture) through flat or tubular membranes. This method consists of measuring the transient permeation rates through the membrane when one of its faces is suddenly put into contact with the liquid medium. The change in the transient rate with time is analyzed by numerical best fitting methods to determine the Fickian diffusion coefficient. A simplified equation is proposed for the fitting of the response of a tubular membrane. Deviations from the Fickian transport mechanism with concentration-independent diffusion coefficient can be evidenced and eventually analyzed by using other mechanistic models.  相似文献   

15.
A membrane structure consisting of an aligned array of open ended carbon nanotubes (7 nm i.d.) spanning across an inert polymer matrix allows the diffusive transport of aqueous ionic species through CNT cores. The plasma oxidation process that opens CNTs tips inherently introduces carboxylic acid groups at the CNT tips, which allows for a limited amount of chemical functional at the CNT pore entrance. However for numerous applications, it is important to increase the density of carboxylic acid groups at the pore entrance for effective separation processes. Aqueous diazonium-based electrochemistry significantly increases the functional density of carboxylic acid groups. pH dependent dye adsorption–desorption and interfacial capacitance measurements indicate 5–6 times increase in functional density. To further control the spatial location of the functional chemistry, a fast flowing inert liquid column inside the CNT core is found to restrict the diazonium grafting to the CNT tips only. This is confirmed by the increased flux of positively charged with anionic functionality. The electrostatic enhancement of ion diffusion is readily screened in 0.1 M electrolyte solution consistent with the membrane pore geometry and increased functional density.  相似文献   

16.
In this second paper of a two part series, we investigate the implications of the interfacial phenomenon, caused by adsorbate-adsorbate interactions coupled with the difference in adsorbate density between the zeolite and the gas phase, upon benzene permeation through single-crystal and polycrystalline microporous NaX membranes. The high flux predicted for thin single-crystal membranes reveals that substantially enhanced flux should be expected in submicron films. Simulations also indicate that the standard local equilibrium assumption made for larger scale membranes is inapplicable at the submicron scale associated with nanometer size grains of thin and/or polycrystalline membranes. Apparent activation energies predicted for benzene permeation through NaX membranes via kinetic Monte Carlo (KMC) simulations are in good agreement with laboratory experiments. The simulations also uncover temperature-dependent flux pathways leading to non-Arrhenius behavior observed experimentally. The failure of the Darken approximation, especially in the presence of the interfacial phenomenon, leads to a substantial overprediction of the flux. Simulations of polycrystalline membranes suggest that this same interfacial phenomenon leads to resistance that can reduce flux by an order of a magnitude with only moderate polycrystallinity.  相似文献   

17.
We demonstrate that a position correlation magnetic resonance imaging (MRI) experiment based on two phase encoding steps separated by a delay can be used for quantifying diffusion across a membrane. This method is noninvasive, and no tracer substance or concentration gradient across the membrane is required. Because, in typical membranes, the T1 relaxation time of the fluid spins is usually much longer than the T2 time, we developed and implemented a new position correlation experiment based on a stimulated spin-echo, in which the relaxation attenuation of the signal is dominated by T1 instead of T2. This enables using relatively long delays needed in the diffusion measurements. The sensitivity of the double encoded experiment detected in a conventional way is still low because of the low filling factor of the fluid inside the NMR coil around the sample. We circumvent this problem by using the remote detection technique, which significantly increases the sensitivity, making it possible to do the measurements with gaseous fluids that have a low spin-density compared to liquids. We derive a model that enables us to extract a diffusion constant characterizing the diffusion rate through the membrane from the obtained correlation images. The double phase encoded MRI method is advantageous in any kind of diffusion studies, because the propagator of fluid molecules can directly be seen from the correlation image.  相似文献   

18.
A novel evaporative cell is used to measure steady-state gradient-driven diffusion rates of water through hydrogel membranes in the absence of external mass-transfer resistance. In this cell, the bottom surface of a hydrogel membrane is exposed to pure water vapor at known activity (aw) less than unity, while a sealed liquid-water reservoir bathes the upper membrane surface. Induced by the chemical-potential gradient between the two surfaces, the water evaporation rate is monitored by the rate of weight loss of the water reservoir.Results at ambient temperature are compared with those from measured water flux through soft-contact-lens (SCL) materials and with other published experimental results. Concentration-dependent water diffusivities are obtained by interpreting measured water fluxes for 0.11 ≤ aw ≤ 0.93 with extended Maxwell–Stefan (EMS) diffusion theory. Thermodynamic non-ideality is taken into account through Flory–Rehner polymer–solution theory. Shrinking/swelling is modeled by conservation of the total polymer mass assuming volume additivity. In spite of correction for thermodynamic non-ideality, EMS–water-diffusion coefficients increase with the water volume fraction, especially strongly for those hydrogel materials with low liquid-saturated water contents. The evaporation cell described here provides a simple robust method to establish water transport rates through soft-contact-lenses and other hydrogel membranes without the need to correct for external mass-transfer resistance.  相似文献   

19.
20.
The 4‐tert‐butylphenylcarbamates of cellulose and amylose bearing a small amount of 3‐(triethoxysilyl)propyl residues were synthesized by a one‐pot process and efficiently immobilized onto a silica gel through intermolecular polycondensation of the triethoxysilyl groups. The obtained chiral packing materials (CPMs) were evaluated by HPLC. The polysaccharide derivatives containing about 1–2% of the 3‐(triethoxysilyl)propyl residue were efficiently immobilized with a high chiral recognition ability. The immobilized CPMs could be used with the eluents containing chloroform and tetrahydrofuran (THF), which cannot be used with the conventional coated‐type CPMs. By using these eluents, the chiral recognition for many racemates was improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号