共查询到20条相似文献,搜索用时 15 毫秒
1.
Jianshu Li Huining Xiao Young Shin Kim Tao Lu Lowe 《Journal of polymer science. Part A, Polymer chemistry》2005,43(24):6345-6354
A range of novel cationic star‐like polymers (Star‐P(MeDMA)s) were synthesized through atom transfer radical polymerization (ATRP) by core‐first method, using a β‐cyclodextrin initiator with 21 initiation sites (21Br‐β‐CD). Methyl chloride‐quaternized 2‐(dimethylamino)ethyl methacrylate (MeDMA) was polymerized in an aqueous medium using 21Br‐β‐CD, Cu(I)Br, and 2,2′‐dipyridyl as an initiator, catalyst, and ligand, respectively. The effects of polymerization temperature and monomer/initiator ratios on the degree and kinetics of polymerization were investigated. The molecular weights, hydrodynamic sizes, and charge densities of the quaternized polymers were characterized using gel permeation chromatography (GPC), dynamic light scattering (DLS), and colloidal titration, respectively. The results demonstrated that the moderate aqueous solubility of the 21Br‐β‐CD initiator had significant impact on the physicochemical properties of the obtained star polymers. The polymerization of 500/1/2/5 ([M]0/[I]0/[Cu(I)0/[L]0]) at 90 °C for 6 h was found to be the best condition to synthesize the proposed cationic star polymer with well‐defined structures in aqueous medium. The nonlinear relationship between the apparent charge density and the particle size of the cationic star polymers was further revealed by GPC and DLS measurements. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6345–6354, 2005 相似文献
2.
Water‐soluble electrically conductive polymer poly(3,4‐ethylenedioxythiophene) (PEDOT) was synthesized by the enzymatic‐catalyzed method using 3,4‐ethylenedioxythiophene (EDOT) as monomer, poly(styrenesulfonate) (PSS) as water‐soluble polyelectrolyte, horseradish peroxidase enzyme as catalyst, and hydrogen peroxide (H2O2) as oxidant. Fourier transform infrared spectra and UV–vis absorption spectra confirm the successful enzymatic‐catalyzed polymerization of PEDOT. Dynamic light scattering data confirm the formation of a stable PEDOT:PSS aqueous dispersion. The thermo gravimetric data show that the obtained PEDOT is stable over a fairly high range of temperatures. The atomic force microscopy height images show that the PEDOT:PSS aqueous dispersion can form excellent homogeneous and smooth films on various substrates by conventional solution processing techniques, which renders this PEDOT:PSS aqueous dispersion a very promising candidate for various application in electronic devices. This enzymatic polymerization is a new approach for the synthesis of optical and electrical active PEDOT polymer, which benefits simple setting, high yields, and environmental friendly route. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
3.
David P. Cole Ezat Khosravi Osama M. Musa 《Journal of polymer science. Part A, Polymer chemistry》2016,54(3):335-344
We describe here the first example of the synthesis of 4‐arm star poly(acrylic acid) for use as a water‐soluble drag reducing agent, by applying Cu(0)‐mediated polymerization technique. High molecular weight 4‐arm star poly(tert‐butyl acrylate) (Mn = 3.0–9.0 × 105 g mol?1) was first synthesized using 4,4′‐oxybis(3,3‐bis(2‐bromopropionate)butane as an initiator and a simple Cu(0)/TREN catalyst system. Then, 4‐arm star poly(tert‐butyl acrylate) were subjected to hydrolysis using trifluoroacetic acid resulting in water‐soluble 4‐arm star poly(acrylic acid). Drag reduction test rig analysis showed 4‐arm star poly(acrylic acid) to be effective as a drag reducing agent with drag reduction of 24.3%. Moreover, 4‐arm star poly(acrylic acid) exhibited superior mechanical stability when compared with a linear poly(acrylic acid) and commercially available drag reducing polymers; Praestol and poly(ethylene oxide). The linear poly(acrylic acid), Praestol, and poly(ethylene oxide) all showed a large decrease in drag reduction of 8–12% when cycled 30 times through the drag reduction test rig while, in contrast, 4‐arm star poly(acrylic acid) demonstrated much higher mechanical stability. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 335–344 相似文献
4.
The synthesis and characterization of barbiturate‐ and thiobarbiturate‐functionalized polystyrene from polystyrene homopolymer by polymer‐modification reactions is discussed. Polystyrene homopolymer quantitatively functionalized at the para postion with diethyl oxomalonate functionality was subjected to a condensation reaction with urea and thiourea in the presence of sodium methoxide in methanol. This reaction proceeded essentially to quantitative conversion to the barbiturate‐ (BAPS) and thiobarbiturate‐functionalized polystyrenes (TBAPS) as estimated by 1H NMR, UV, and IR spectroscopies. Thus, several copolymers of styrene with barbiturate‐ and thiobarbiturate‐functionalized styrene were synthesized. The detailed characterizations of quantitatively functionalized polystyrene using gel permeation chromatographic, IR, UV, and 1H NMR spectroscopic techniques as well as thermogravimetric analysis are discussed. An application of the newly synthesized polymer in removing Cu(II) ions from aqueous solution is demonstrated. This is the first report on the synthesis of BAPS and TBAPS by the polymer‐modification route or otherwise. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 731–737, 2002; DOI 10.1002/pola.10154 相似文献
5.
Eudokia K. Oikonomou Georgios Bokias Joannis K. Kallitsis 《Journal of Polymer Science.Polymer Physics》2008,46(12):1149-1158
The interaction of Cu2+ ions with the homopolymer poly(styrene sulfonic acid) (PSSH), as well as with the copolymers of maleic acid (MAc) with styrene sulfonic acid (SSH) or vinyl acetate (VAc), was investigated in dilute aqueous solution through turbidimetry, potentiometry, viscometry, and spectrophotometry in the visible region. Cu2+ ions were introduced either through neutralization with Cu(OH)2 of the acid form of the (co)polymers (PSSH, P(SSH‐co‐MAc) and P(VAc‐co‐MAc)) or through mixing of the sodium salt form of the (co)polymers (PSSNa, P(SSNa‐co‐MANa) and P(VAc‐co‐MANa)) with CuSO4. Turbidimetry, potentiometry, and spectrophotometry revealed that the first carboxylic group of MAc or both carboxylate groups of MANa are involved in the complexation with Cu2+ ions when neutralization with Cu(OH)2 or mixing with CuSO4 are applied, respectively. The increased values of the reduced viscosity observed mainly at the first stages of neutralization of P(VAc‐co‐MAc) with Cu(OH)2 indicate that interchain polymer‐Cu2+ complexation takes possibly place. Finally, the spectrophotometric behavior observed upon neutralization of P(SSH‐co‐MAc) with Cu(OH)2 or mixing of P(SSNa‐co‐MANa) with CuSO4 revealed that the strength of counterion binding by the sulfonate groups is, in fact, comparable with the complexation of Cu2+ ions with the carboxylate groups of MAc. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1149–1158, 2008 相似文献
6.
Casandra M. Gardner Carla E. Brown Harald D. H. Stöver 《Journal of polymer science. Part A, Polymer chemistry》2012,50(22):4674-4685
Preparation and study of a series of copolymers incorporating 2‐vinyl‐4,4‐dimethylazlactone (VDMA) is reported. The reactivity ratios for photo‐initiated free radical copolymerization of VDMA with methacrylic acid (MAA), acrylic acid (AA), acrylamide (AAm), dimethylacrylamide (DMAA), hydroxyethyl methacrylate (HEMA), methoxy poly(ethylene glycol) methacrylate (MPEG300MA), and 2‐methacryloyloxyethyl phosphorylcholine (MPC), were determined by fitting comonomer conversion data obtained by in situ 1H NMR to a terminal copolymerization equation. Semi‐batch photo‐copolymerizations were then used to synthesize the corresponding VDMA copolymers with constant composition. Their solubility and dissolution behavior, as well as their hydrolysis half‐lives under physiological conditions, were determined. P(VDMA‐co‐MAA) copolymers with 52 to 93 mol % VDMA showed decreasing initial solubility and increasing hydrolysis half‐lives with increasing VDMA content. VDMA copolymers with nonionic monomers AAm and DMAA were water soluble only at VDMA contents of 41 and 22 mol % or less, respectively, and showed longer hydrolysis half‐lives than comparable MAA copolymers. VDMA copolymers with HEMA and MPEG300MA were found to crosslink during storage, so their hydrolysis half‐lives were not determined. VDMA copolymers with 18% zwitterionic MPC showed a much longer half‐life and superior initial solubility compared to analogous p(VDMA‐co‐MAA), identifying this copolymer as a promising candidate for macromolecular crosslinkers in, for example, aqueous layer‐by‐layer co‐depositions with polyamines. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
7.
Aliki Kalogianni Eleftherios Pefkianakis Andreas Stefopoulos Georgios Bokias Joannis K. Kallitsis 《Journal of Polymer Science.Polymer Physics》2010,48(19):2078-2083
The synthesis of a water‐soluble copolymer containing quinoline groups, P(DMAM‐co‐SDPQ), through free radical copolymerization of N,N‐dimethylacrylamide, DMAM, with 2,4‐diphenyl‐6‐(4‐vinylphenyl)quinoline, SDPQ, is presented and the optical properties of the final product are investigated in aqueous solution as a function of pH. It is found that the emission peak of SDPQ is red‐shifted from 411 to 484 nm with decreasing pH, due to the protonation of quinoline groups at low pH, suggesting that this copolymer may function as a luminescent pH‐indicator. Moreover, the copolymer exhibits the characteristics of a luminescent pH‐detector within the pH range 2 < pH < 4, as in this pH region the ratio of the emission intensity at 411 nm over that at 484 nm changes linearly in a logarithmic scale with the pH of the solution. Finally, the formation of less polar quinoline clusters in the aqueous P(DMAM‐co‐SDPQ) solution upon increasing pH was detected through Nile red probing. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 2078–2083, 2010 相似文献
8.
Takuya Kubo Naomi Kimura Ken Hosoya Kunimitsu Kaya 《Journal of polymer science. Part A, Polymer chemistry》2007,45(17):3811-3817
In this study, we described the fundamental properties of novel polymer monoliths that were prepared from a water‐soluble crosslinking agent. Each monolith was evaluated by scanning electron microscope (SEM) and scanning probe microscope (SPM) to observe the monolithic structure, and the polymer films that were prepared from several monomers were evaluated by the contact angle of water. As results of evaluations, the polymer prepared from a water‐soluble crosslinking agent had high hydrophilicity. Furthermore, SEM evaluations suggested that polymer porogenic solvent (PEG) was contributed to the construction of monolithic structure, and the polymerization degree of PEG was also taken effect of the structural changing by the variation of phase separation. Additionally, the results of SPM evaluations and the differences of monolithic structure were also reflected under water condition although the swelling of polymer was observed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3811–3817, 2007 相似文献
9.
Boualem Hammouda 《Journal of Polymer Science.Polymer Physics》2006,44(22):3195-3199
The model water‐soluble polymer poly(ethylene oxide) was used to investigate solvation characteristics in mixtures of d‐water (deuterated water) and d‐alcohols (deuterated alcohols). Three d‐alcohols have been used: d‐methanol, d‐ethanol, and d‐ethylene glycol. Small angle neutron scattering was used to monitor the solvation properties of poly(ethylene oxide) in the d‐solvent mixtures. Nonideal solvent mixing was observed throughout. Solvent mixtures were found to be more effective solvating agents than individual solvents. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3195–3199, 2006 相似文献
10.
Matthew Skinner Ryan Selhorst Todd Emrick 《Journal of polymer science. Part A, Polymer chemistry》2016,54(1):127-134
A series of water‐soluble siloxane polymers with pendent phosphorylcholine (PC) and sulfobetaine (SB) zwitterions was prepared using thiol‐ene “click” chemistry. Specifically, well‐defined vinyl‐substituted siloxane homopolymers and block copolymers were functionalized with small molecule zwitterionic thiols at room temperature. Rapid and quantitative substitution of the pendent vinyl groups was achieved, and zwitterionic polysiloxanes of narrow molecular weight distribution were obtained. The PC‐ and SB‐substituted polymers were found to be readily soluble in pure, salt‐free water. Critical micelle concentrations (CMCs) of these polymers in water were measured using a pyrene fluorescence probe, with CMC values estimated to be <0.01 g/L. Polymer aggregates were studied by dynamic light scattering, and the micelles generated from the PC block copolymers were visualized, after drying, by transmission electron microscopy. Aqueous solutions of these zwitterionic polysiloxanes significantly reduced the oil‐water interfacial surface tension, functioning as polymer amphiphiles that lend stability to oil‐in‐water emulsions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 127–134 相似文献
11.
Bekir Dizman Mohamed O. Elasri Lon J. Mathias 《Journal of polymer science. Part A, Polymer chemistry》2006,44(20):5965-5973
New water‐soluble methacrylate polymers with pendant quaternary ammonium (QA) groups were synthesized and used as antibacterial materials. The polymers with pendant QA groups were obtained by the reaction of the alkyl halide groups of a previously synthesized functional methacrylate homopolymer with various tertiary alkyl amines containing 12‐, 14‐, or 16‐carbon alkyl chains. The structures of the functional polymer and the polymers with QA groups were confirmed with Fourier transform infrared and 1H and 13C NMR. The degree of conversion of alkyl halides to QA sites in each polymer was determined by 1H NMR to be over 90% in all cases. The number‐average molecular weight and polydispersity of the functional polymer were determined by size exclusion chromatography to be 32,500 g/mol and 2.25, respectively. All polymers were thermally stable up to 180 °C according to thermogravimetric analysis. The antibacterial activities of the polymers with pendant QA groups against Staphylococcus aureus and Escherichia coli were determined with broth‐dilution and spread‐plate methods. All the polymers showed excellent antibacterial activities in the range of 32–256 μg/mL. The antibacterial activity against S. aureus increased with an increase in the alkyl chain length for the ammonium groups, whereas the antibacterial activity against E. coli decreased with increasing alkyl chain length. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5965–5973, 2006 相似文献
12.
Stefan M. Paterson David H. Brown Traian V. Chirila Imelda Keen Andrew K. Whittaker Murray V. Baker 《Journal of polymer science. Part A, Polymer chemistry》2010,48(18):4084-4092
2‐Hydroxyethyl methacrylate has been polymerized in methanol using activators regenerated by electron transfer (ARGET) atom transfer radical polymerization (ATRP), to produce water‐soluble poly(2‐hydroxyethyl methacrylate) (PHEMA). The various parameters that determine control of the living polymerization have been explored. Using the Cu(II)/TPMA catalyst system (TPMA = tris(2‐pyridylmethyl)amine), controlled polymerization was achieved with Cu concentrations as low as 50 ppm relative to HEMA, with a [TPMA]/[Cu(II)] ratio of 5. Use of hydrazine as the reducing agent generally gave better control of polymerization than use of ascorbic acid. The polymerization conditions were tolerant of small amounts of air, and colorless polymers were easily isolated by simple precipitation and washing steps. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4084–4092, 2010 相似文献
13.
The surface characterization of 2‐(dimethylamino)ethylmethacrylate (DMA) and 2‐(N‐morpholino)ethylmethacrylate (MEMA) homopolymers and DMA–MEMA diblock copolymer was studied using inverse‐gas chromatography (IGC). The analyzed surface properties of (co)polymers were the dispersive component of the surface energy ( ) and the acid–base characters of (co)polymer surfaces. The specific free energy (ΔGsp), enthalpy (ΔHsp), and entropy (ΔSsp) of adsorption of polar probes on (co)polymers were calculated. The values of ΔHsp were correlated with both the donor and the modified acceptor numbers (AN) of the probes to quantify the acidic KA and the basic KD parameters of (co)polymer surfaces. The values obtained for the KA and KD parameters indicated basic characters for the surface of (co)polymers. The dispersive component values of the surface energy and the acid–base surface parameters of the DMA–MEMA diblock copolymer surface were found to be between those homopolymers as expected. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
14.
Kunihiro Ichimura Shuji Iwata Shin'ya Mochizuki Mamoru Ohmi Daisaku Adachi 《Journal of polymer science. Part A, Polymer chemistry》2012,50(19):4094-4102
The photocrosslinking behavior of poly(vinyl alcohol) (PVA) substituted with 0.1, 0.3, 1.3, and 4.0 mol % of styrylpyridinium (SbQ) (PVA‐SbQs) side chains was reinvestigated. Even‐order derivative spectra of films of PVAs loaded with 0.1 and 0.3 mol % of SbQ revealed the presence of subpeaks owing to vibrational transitions, whereas PVA bearing 1.3 and 4.0 mol % of SbQ displayed a new blue‐shifted band (H‐band) at 328 nm due to H‐aggregation. Changes in derivative spectra disclosed the rapid disappearance of the H‐band of PVA‐SbQs under UV irradiation within exposure doses of 10 mJ cm?2. On the other hand, the films of the PVA‐SbQs were insolubilized upon UV irradiation at exposure doses of 2 and 3 mJ cm?2, respectively, leading to the conclusion that the high photosensitivity comes from the photodimerization of H‐aggregate as a ground‐state dimer. Fluorescence measurements implied the presence of J‐aggregate at 386 nm, but the involvement of the J‐aggregation in photocrosslinking was excluded because of its negligible fraction. A photosensitive emulsion of poly(vinyl acetate) emulsified with PVA‐SbQ exhibited similar changes in higher‐order derivative spectra in film and applied to fabricate a stencil for screen printing with aid of an LED‐emitting 375 nm light. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
15.
Yi Chen Kan‐Yi Pu Qu‐Li Fan Xiao‐Ying Qi Yan‐Qin Huang Xiao‐Mei Lu Wei Huang 《Journal of polymer science. Part A, Polymer chemistry》2009,47(19):5057-5067
Three sulfonato‐containing fluorene‐based anionic water‐soluble conjugated polymers, which are specially designed to link fluorene with alternating moieties such as bipyridine ( P1 ), pyridine ( P2 ), and benzene ( P3 ) have been synthesized via the Pd‐catalyzed Sonogashira‐coupling reaction, respectively. These polymers had good solubility in water and showed different responses for transition metal ions with different valence in aqueous environments: the fluorescence of bipyridine‐containing P1 can be completely quenched by addition of all transition metal ions selected and showed a good selectivity for Ni2+; the pyridine‐containing P2 had a little response for monovalent and divalent metal ions while showed good quenching with the addition of trivalent metal ions (with a special selectivity for Fe3+); P3 had responses only for the trivalent metal ions within the ionic concentration we studied. After investigation of the UV‐vis absorption spectra, PL emission spectra, DLS, and fluorescence lifetime of P1 – P3 in aqueous solution when adding transition metal ions, we found that the different spectrum responses of these polymers are attributed to the different coordination ability of the units linked with fluorene in the main chain. The energy or electron‐transfer reactions were the main reason for fluorescence quenching of P1 and P2 . On the other hand, interchain aggregation caused by trivalent metal ions lead to fluorescence quenching for P3 and also caused partly fluorescence quenching of P1 and P2 . These results revealed the origin of ionochromic effects of these polymers and suggested the potential application for these polymers as novel chemosensors with higher sensing sensitivity in aqueous environments. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5057–5067, 2009 相似文献
16.
Sergio O. Gonzalez Steven Furyk Chunmei Li Shane E. Tichy David E. Bergbreiter Eric E. Simanek 《Journal of polymer science. Part A, Polymer chemistry》2004,42(24):6309-6317
The use of soluble thermoresponsive polymers to sequester or scavenge hydrophobic guest molecules from dilute aqueous solutions on heating is described. In these studies, a homopolymer of N‐isopropylacrylamide was shown to sequester 46–83% of a soluble monochlorotriazine from 0.1–10 ppm aqueous solutions when heating above this polymer's lower critical solution temperature (LCST). Substitution of the reactive piperidine‐containing 20:1 copolymer poly(N‐isopropylacrylamide)‐c‐poly[N‐4‐(acrylamidomethyl)piperidine] for this unreactive polymer led to >98% scavenging of these same triazines when heating above this reactive polymer's LCST. The monochlorotriazine guests studied included the herbicide atrazine and two dye‐labeled analogues of this herbicide. In one case, an atrazine analogue was designed so as to contain a dansyl group for fluorescence analysis. In the second case, an atrazine analogue was labeled with a methyl red group to facilitate visual and spectrophotometric analysis. Atrazine concentrations were measured with liquid chromatography–mass spectrometry. The enhanced efficiency of the reactive piperidine‐containing copolymer scavenger in removing triazines from solution is attributed to covalent bond formation by nucleophilic aromatic substitution of the chlorine of the monochlorotriazines by the piperidine nucleophile on the copolymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6309–6317, 2004 相似文献
17.
Julien Rigolini Bruno Grassl Stéphanie Reynaud Laurent Billon 《Journal of polymer science. Part A, Polymer chemistry》2010,48(24):5775-5782
We performed a critical reinvestigation of microwave enhancement of nitroxide‐mediated polymerization (NMP) of acrylamide (AM) in aqueous media in the dynamic (DYN) mode with a combination of a conventional hydrosoluble radical initiator and a β‐phosphonylated nitroxide (SG1). Based on the results of our previous work, a complementary series of polymerization reactions was carried out between 130 and 160 °C using only the DYN mode to ascertain the existence of a microwave effect. The polymer conversion (p), molar masses, polydispersity index, and viscosity of each sample were measured. The temperature was monitored inside and outside of the vessel using an optical fiber sensor and an IR sensor, respectively. Microwave enhancement of polymerization, temperature control and viscosity of the reaction media were closely related. We also furthered the field of hydrophilic AB diblock copolymer synthesis using a tertiary SG1‐based macroalkoxyamine and directly synthesized both poly(acrylamide‐b‐sodium 2‐acrylamido‐2‐methylpropanesulfonate), a neutral‐b‐anionic diblock copolymer, and poly(acrylamide‐b‐3‐dimethyl(methacrylamidopropyl)ammonium propanesulfonate), a neutral‐b‐zwitterionic diblock copolymer, in homogeneous aqueous media. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010 相似文献
18.
Ignacio Rintoul Christine Wandrey 《Journal of polymer science. Part A, Polymer chemistry》2009,47(2):373-383
The effect of magnetic field (MF) on the radical copolymerization of a series of water‐soluble and ionic monomers is presented including acrylamide (AM), acrylic acid (AA), its ionized form acrylate (A?), and diallyldimethylammonium chloride (DADMAC). The following combinations have been studied: AM/AA, AM/A?, AM/DADMAC, and AA/DADMAC. In addition to the MF, strong electrostatic interactions are present for the majority of monomer combinations and conditions. Although the monomer consumption rate (Rp) increased up to 65% applying a MF of 0.1 Tesla, the composition of the resulting copolymers was not affected under such conditions. Despite this increase of Rp by MF, the electrostatic repulsion between ionic monomers and charged growing radicals dominates Rp and governs the copolymer composition with and without MF. The order of the experimentally obtained reactivity ratios reflects the extent of electrostatic interaction: rAM/AA (1.41) < r (3.10) < rAA/DADMAC (4.25) < rAM/DADMAC (6.95) and rAA/AM (2.20) > rDADMAC/AA (0.25) > r (0.17) > rDADMAC/AM (0.03). Overall, weak MF offers to reduce the production time without modifying the product composition. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 373–383, 2009 相似文献
19.
20.
Keiji Kanki Atsushi Nakazato Ryoji Nomura Fumio Sanda Toshio Masuda 《Journal of polymer science. Part A, Polymer chemistry》2004,42(9):2100-2105
A novel, water‐soluble Rh complex, (nbd)Rh[PPh2(m‐NaOSO2C6H4)] [C(Ph)?CPh2] ( 1 ) was synthesized by the reaction of [(nbd)RhCl]2, Ph2P(m‐NaOSO2C6H4) and Ph2C?C(Ph)Li, whose structure was determined by NMR and IR spectroscopies. The Rh catalyst 1 induced the polymerization of phenylacetylene (PA) in water to give two kinds of polymers; one was soluble in organic solvents such as tetrahydrofuran (THF) and CHCl3, and the other was insoluble in common organic solvents. The polymerization of sodium p‐ethynylbenzoate (p‐NaOCO‐PA) homogeneously proceeded with 1 in water at 60 °C to give the polymer in high yield. Poly(p‐NaOCO‐PA) was treated with 1 N HCl and then reacted with (CH3)3SiCHN2 to obtain poly(p‐MeOCO‐PA). The methyl‐esterified polymer was insoluble in THF and CHCl3, which suggests that the formed poly(p‐MeOCO‐PA) has cis–cisoidal structure. The polymer obtained from the polymerization of [p‐CH3(OCH2CH2)2O2CC6H4]C?CH with 1 in water was soluble in methanol, ethanol, and THF, and partly soluble in water. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2100–2105, 2004 相似文献