首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3,3′,4,4′‐Diphenylsulfonetetracarboxylic dianhydride was reacted with L ‐phenylalanine in acetic acid, and the resulting imide acid ( 3 ) was obtained in high yield. The diacid chloride ( 4 ) was obtained from its diacid derivative ( 3 ) by reaction with thionyl chloride. The polycondensation reaction of 4 with several aromatic diamines such as 4,4′‐sulfonyldianiline, 4,4′‐diaminodiphenyl methane, 4,4′‐diaminodiphenylether, p‐phenylenediamine, m‐phenylenediamine, 2,4‐diaminotoluene, and 1,5‐diaminonaphthalene was developed with a domestic microwave oven in the presence of trimethylsilyl chloride and a small amount of a polar organic medium such as o‐cresol. The polymerization reactions were also performed with two other methods: low‐temperature solution polycondensation in the presence of trimethylsilyl chloride and reflux conditions. A series of optically active poly(amide‐imide)s with moderate inherent viscosities of 0.21–0.42 dL/g were obtained in high yield. All of the aforementioned polymers were fully characterized by IR, 1H NMR elemental analyses, and specific rotation techniques. Some structural characterizations and physical properties of these optically active poly(amide‐imide) s are reported. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3974–3988, 2003  相似文献   

2.
A new facile and rapid polycondensation reaction of 4,4′‐(hexafluoroisopropylidene)‐N,N′‐bis(phthaloyl‐L‐leucine) diacid chloride (1) with several aromatic diamines, including benzidine (2a), 4,4′‐diaminodiphenyl methane (2b), 1,5‐diaminoanthraquinone (2c), 4,4′‐sulfonyldianiline (2d), 3,3′‐diaminobenzophenone (2e), P‐phenylenediamine (2f), 2,6‐diaminopyridine (2g), 4,4′‐diaminobenzophenone (2h), 2,4‐diaminotoluene (2i), and 4,4′‐diaminodiphenylether (2j), was developed with a domestic microwave oven in the presence of a small amount of a polar organic medium such as o‐cresol. The polymerization reactions proceeded rapidly compared to conventional solution polycondensation and finished within 12 min, producing a series of optically active poly(amide‐imide)s with quantitative yields and high inherent viscosities of 0.50–1.93 dL/g. All of the polymers were fully characterized by IR, elemental analyses, and specific rotation. Some structural characterization and physical properties of these optically active poly(amide‐imide)s are reported. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1154–1160, 2000  相似文献   

3.
3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (4,4′‐carbonyldiphathalic anhydride) was reacted with L ‐leucine in a mixture of acetic acid and pyridine (3 : 2), and the resulting imide‐acid [N,N′‐(4,4′‐carbonyldiphthaloyl)‐bis‐L ‐leucine diacid] was obtained in quantitative yield. The compound was converted to the N,N′‐(4,4′‐carbonyldiphthaloyl)‐bis‐L ‐leucine diacid chloride by reaction with thionyl chloride. A new facile and rapid polycondensation reaction of this diacid chloride with several aromatic diamines such as 4,4′‐diaminodiphenyl methane, 2,4‐diaminotoluene, 4,4′‐sulfonyldianiline, p‐phenylenedi‐amine, 4,4′‐diaminodiphenylether, and m‐phenylenediamine was developed by using a domestic microwave oven in the presence of a small amount of a polar organic medium such as O‐cresol. The polymerization reactions proceeded rapidly compared with the conventional solution polycondensation and were completed within 6 min, producing a series of optically active poly(amide‐imide)s with a high yield and an inherent viscosity of 0.37–0.57 dL/g. All of the above polymers were fully characterized by IR, elemental analyses, and specific rotation. Some structural characterization and physical properties of these optically active poly(amide‐imide)s are reported. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 177–186, 2001  相似文献   

4.
The rigid‐rod polymers, poly(2,6‐naphthalenebenzobisoxazole) (Naph‐2,6‐PBO) and poly(1,5‐naphthalenebenzobisoxazole) (Naph‐1,5‐PBO) were synthesized by high temperature polycondensation of isomeric naphthalene dicarboxylic acids with 4,6‐diaminoresorcinol dihydrochloride in polyphosphoric acid. Expectedly, these polymers were found to have high thermal as well as thermooxidative stabilities, similar to what has been reported for other polymers of this class. The chain conformations of Naph‐2,6‐PBO and Naph‐1,5‐PBO were trans and the crystal structures of Naph‐2,6‐PBO and Naph‐1,5‐PBO had the three‐dimensional order, although the axial disorder existed for both Naph‐2,6‐PBO and Naph‐1,5‐PBO. Naph‐2,6‐PBO exhibited a more pronounced axial disorder than Naph‐1,5‐PBO because of its more linear shape. The repeat unit distance for Naph‐2,6‐PBO (14.15 Å) was found to be larger compared with that of Naph‐1,5‐PBO (12.45 Å) because of the more kinked structure of the latter. The extents of staggering between the adjacent chains in the ac projection of the crystal structure were 0.25c and 0.23c for Naph‐2,6‐PBO and Naph‐1,5‐PBO, respectively. Naph‐1,5‐PBO has a more kinked and twisted chain structure relative to Naph‐2,6‐PBO. The kinked and twisted chain structure of Naph‐1,5‐PBO in the crystal seems to prevent slippage between adjacent chains in the crystal structure. The more perfect crystal structure of Naph‐1,5‐PBO may be due to this difficulty in the occurrence of the slippage. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1948–1957, 2006  相似文献   

5.
A new one‐pot procedure for imide–acid monomer synthesis and polymerization is reported for four new poly(amide–imide)s. Bisphenol A dianhydride (BPADA) was reacted with twice the molar amount of 3‐aminobenzoic acid (3ABA) or 3‐amino‐4‐methylbenzoic acid (3A4MBA) in 1‐methyl‐2‐pyrrolidinone (NMP) and toluene mixture, and the amic acid intermediates cyclized in solution to give two diimide‐containing dicarboxylic acid monomers. Without isolation, the diacid monomers were then polymerized with either 1,3‐diaminomesitylene (DAM) or 1,5‐diaminonaphthalene (1,5NAPda) using triphenyl phosphite‐activation to give a series of four soluble poly(amide–imide)s, PAI. Isolation and purification of the dicarboxylic acid monomers was not necessary for formation of high molecular weight polymers as indicated by intrinsic viscosities of 0.64–1.04 dL/g determined in N,N‐dimethylacetamide (DMAc). All of the PAI were soluble in polar aprotic solvents such as NMP, DMAc, and dimethyl sulfoxide (DMSO). Glass transition temperatures ranged from 243 to 279°C by DSC, and 5% weight loss temperatures were above 400°C in both air and nitrogen. Flexible films cast from DMAc were light yellow, transparent, and tough. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1183–1188, 1999  相似文献   

6.
A new type of tetraimide‐dicarboxylic acid ( I ) was synthesized starting from the ring‐opening addition of m‐aminobenzoic acid, 4,4′‐oxydiphthalic anhydride, and 2,2‐bis[4‐(4‐aminophenoxy)phenyl]propane at a 2:2:1 molar ratio in N‐methyl‐2‐pyrrolidone (NMP), followed by cyclodehydration to the diacid I . A series of soluble and light‐colored poly(amide‐imide‐imide)s ( III a–j) was prepared by triphenyl phosphite‐activated polycondensation from I with various aromatic diamines ( II a–j). All films cast from N,N‐dimethylacetamide (DMAc) had cutoff wavelengths shorter than 390 nm (374–390 nm) and b* values between 25.26 and 43.61; these polymers were much lighter in color than the alternating trimellitimide series. All of the polymers were readily soluble in a variety of organic solvents such as NMP, DMAc, N,N‐dimethylformamide, dimethyl sulfoxide, and even in less polar m‐cresol and pyridine. Polymers III a–j afforded tough, transparent, and flexible films that had tensile strengths ranging from 96 to 118 MPa, elongations at break from 9 to 11%, and initial moduli from 2.0 to 2.5 GPa. The glass‐transition temperatures of the polymers were recorded at 240–268 °C. They had 10% weight loss at a temperature above 540 °C and left more than 55% residue even at 800 °C in nitrogen. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 707–718, 2002; DOI 10.1002/pola.10153  相似文献   

7.
程琳  应磊  杨小玲  蹇锡高 《中国化学》2005,23(2):200-203
A new monomer diacid, 1,2-dihydro-2-(4-carboxylphenyl)-4-[4-(4-carboxylphenoxy)-3-methylphenyl]phtha-lazin-1-one (3), was synthesized through the aromatic nucleophilic substitution reaction of a readily available unsymmetrical phthalazinone 1 bisphenol-like with p-chlorobenzonitrile in the presence of potassium carbonate in N,N-dimethylacetamide and alkaline hydrolysis. The diacid could be directly polymerized with various aromatic diamines 4a-4e using triphenyl phosphite and pyridine as condensing agents to give five new aromatic poly(ether amide)s 5a-5e containing the kink non-coplanar heterocyclic units with inherent viscosities of 1.30-1.54 dL/g.The polymers were readily soluble in a variety of solvents such as N,N-dimethylformamide (DMF), N,N-dimethyl-acetamide (DMA), dimethylsulfoxide (DMSO), N-methyl-2-pyrrolidinone (NMP), and even in m-cresol and pyridine (Py). The transparent, flexible and tough films could be formed by solution casting. The glass transition tem-peratures Tg were in the range of 286-317℃.  相似文献   

8.
Epiclon [3a,4,5,7a‐tetrahydro‐7‐methyl‐5‐(tetrahydro‐2,5‐dioxo‐3‐furanyl)‐1,3‐isobenzofurandione or 5‐(2,5‐dioxotetrahydrofurfuryl)‐3‐methyl‐3‐cyclohexyl‐1,2‐dicarboxylic acid anhydride] was reacted with L ‐leucine in acetic acid, and the resulting imide acid ( 3 ) was obtained in a high yield. The diacid chloride ( 4 ) was obtained from its diacid derivative 3 by a reaction with oxalyl chloride in dry carbon tetrachloride. The polycondensation reaction of 4 with several aromatic diamines, such as 4,4′‐sulfonyldianiline, 4,4′‐diaminodiphenylmethane, 4,4′‐diaminodiphenylether, p‐phenylenediamine, m‐phenylenediamine, 2,4‐diaminotoluene, and 1,5‐diaminonaphthalene, was developed with a domestic microwave oven in the presence of a small amount of a polar organic medium such as N‐methylpyrrolidone. The polymerization reactions were also performed with two other methods: low‐temperature solution polycondensation in the presence of trimethylsilyl chloride and reflux conditions. A series of optically active poly(amide imide)s with moderate yields and inherent viscosities of 0.12–0.19 dL/g were obtained. All of these polymers were fully characterized by IR, elemental analysis, and specific rotation techniques. Some structural characterizations and physical properties of these optically active poly(amide imide)s are reported. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1077–1090, 2003  相似文献   

9.
An unsymmetrical and noncoplanar heterocyclic dianhydride was synthesized from a bisphenol‐like phthalazinone, 4‐(4‐hydroxylphenyl)‐2,3‐phthalazin‐1‐one, and a series of novel poly(ether imide)s based on it, with intrinsic viscosities of 0.67–1.42 dL/g, were obtained by one‐step solution polymerization in m‐cresol at 200 °C for 20 h. The polymers were readily soluble in N‐methyl‐2‐pyrrolidinone and m‐cresol. The poly(ether imide)s derived from 4,4′‐oxydianiline and 4,4′‐methylenedianiline were also very soluble in chloroform, 1,1′,2,2′‐tetrachloroethane, and N,N‐dimethylacetamide. The glass‐transition temperatures were 289–326 °C, as determined by differential scanning calorimetry. All the degradation temperatures for 5% weight loss occurred above 482 °C in nitrogen. The tensile strength of thin films of some of the polymers varied from 103.1 to 121.4 MPa. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6089–6097, 2004  相似文献   

10.
A series of organosoluble aromatic polyimides (PIs) was synthesized from 5,5′‐bis[4‐(4‐aminophenoxy)phenyl]‐4,7‐methanohexahydroindan (3) and commercial available aromatic dianhydrides such as 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐oxydiphthalic anhydride (ODPA), 4,4′‐sulfonyl diphthalic anhydride (SDPA), or 2,2′‐bis(3,4‐dicarboxyphenyl) hexafluoropropanic dianhydride (6FDA). PIs (IIIc–f), which were synthesized by direct polymerization in m‐cresol, had inherent viscosities of 0.83–1.05 dL/g. These polymers could easily be dissolved in N,N′‐dimethylacetamide (DMAc), N‐methyl‐2‐pyrrolidone (NMP), N,N‐dimethylformamide (DMF), pyridine, m‐cresol, and dichloromethane. Whereas copolymerization was proceeded with equivalent molar ratios of pyromellitic dianhydride (PMDA)/6FDA, 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA)/6FDA, or BTDA/SDPA, or ½ for PMDA/SDPA, copolyimides (co‐PIs), derived from 3 and mixed dianhydrides, were soluble in NMP. All the soluble PIs could form transparent, flexible, and tough films, and they showed amorphous characteristics. These films had tensile strengths of 88–111 MPa, elongations at break of 5–10% and initial moduli of 2.01–2.67 GPa. The glass transition temperatures of these polymers were in the range of 252–311°C. Except for IIIe, the 10% weight loss temperatures (Td) of PIs were above 500°C, and the amount of carbonized residues of the PIs at 800°C in nitrogen atmosphere were above 50%. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1681–1691, 1999  相似文献   

11.
3,3′,4,4′‐Diphenylsulfonetetracarboxylic dianhydride (1) was reacted with L ‐isoleucine (2) in acetic acid and the resulting imide‐acid (3) was obtained in high yield. The diacid chloride (4) was prepared from the diacid derivative (3) by reaction with thionyl chloride. The polycondensation reaction of diacid chloride (4) with several aromatic diamines such as 4,4′‐sulfonyldianiline (5a), 4,4′‐diaminodiphenyl methane (5b), 4,4′‐diaminodiphenylether (5c), p‐phenylenediamine (5d),m‐phenylenediamine (5e), 2,4‐diaminotoluene (5f) and 4,4′‐diaminobiphenyl (5g) was performed by two conventional methods: low temperature solution polycondensation and short period reflux conditions. In order to compare conventional solution polycondensation reaction methods with microwave‐assisted polycondensation, the reactions were also carried out under microwave conditions with a small amount of o‐cresol that acts as a primary microwave absorber. The reaction mixture was irradiated for 6 min with 100% of radiation power. Several new optically active poly(amide‐imide)s with inherent viscosity ranging from 0.23 to 0.41 dl/g were obtained with high yield. All of the earlier polymers were fully characterized by IR, elemental analyses and specific rotation techniques. Some structural characterizations and physical properties of these new optically active poly(amide‐imide)s are reported. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Based on green chemistry, a simple and efficient direct synthesis of 4‐(4′‐hydroxyaryl)(2H)phthalazin‐1‐ones ( 2a–2f ) was developed in a two‐step reaction, in which the Friedel–Crafts acylation reaction of six phenols with phthalic anhydride was initially carried out and then followed by cyclization with hydrazine hydrate in good to excellent yields with high regioselectivity. A number of novel heterocyclic poly(arylene ether ketone)s were prepared conveniently from several unsymmetrical, twist, and noncoplanar phthalazinone‐containing monomers ( 2a–2f ) and an activated difluoro monomer via a N? C coupling reaction. It was very interesting that the obtained monomers and polymers exhibited diverse properties with the variation of the number and location of the substituted methyl groups. All these polymers had a high molecular weight with Mn and ηinh in the range of 44,960–169,000 Da and 0.38–0.79 dL/g, respectively. Actually, the obtained polymers displayed excellent thermal properties with Tg's ranging from 222 to 248 °C and 5% weight loss temperatures in nitrogen higher than 430 °C. Moreover, these polymers were readily soluble in common organic solvents, such as N‐methyl‐2‐pyrrolidone, chloroform, pyridine, and m‐cresol, and could be cast into flexible and colorless or nearly colorless films by spin‐coating or casting processes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1525–1535, 2007  相似文献   

13.
To prepare thermally stable and high‐performance polymeric films, new solvent‐soluble aromatic polyamides with a carbamoyl pendant group, namely poly(4,4′‐diamino‐3′‐carbamoylbenzanilide terephthalamide) (p‐PDCBTA) and poly(4,4′‐diamino‐3′‐carbamoylbenzanilide isophthalamide) (m‐PDCBTA), were synthesized. The polymers were cyclized at around 200 to 350 °C to form quinazolone and benzoxazinone units along the polymer backbone. The decomposition onset temperatures of the cyclized m‐ and p‐PDCBTAs were 457 and 524 °C, respectively, lower than that of poly(p‐phenylene terephthalamide) (566 °C). For the p‐PDCBTA film drawn by 40% and heat‐treated, the tensile strength and Young's modulus were 421 MPa and 16.4 GPa, respectively. The film cyclized at 350 °C showed a storage modulus (E′) of 1 × 1011 dyne/cm2 (10 GPa) over the temperature range of room temperature to 400 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 775–780, 2000  相似文献   

14.
A series of new poly(imide‐hydrazide)s and poly(amide‐imide‐hydrazide)s were obtained by the direct polycondensation of N‐[p‐(or m‐)carboxyphenyl]trimellitimide (p‐ or m‐CPTMI) with terephthalic dihydrazide (TPH), isophthalic dihydrazide (IPH), and p‐aminobenzhydrazide (p‐ABH) by means of diphenyl phosphite and pyridine in the N‐methyl‐2‐pyrrolidone (NMP) solutions containing dissolved CaCl2. The resulting hydrazide‐containing polymers exhibited inherent viscosities in the 0.15–0.96 dL/g range. Except for that derived from p‐CPTMI with TPH or p‐ABH, the other hydrazide copolymers were readily soluble in polar solvents such as NMP and dimethyl sulfoxide (DMSO). As evidenced by X‐ray diffraction patterns, the hydrazide copolymer obtained from TPH showed a moderate level of crystallinity, whereas the others were amorphous in nature. Most of the amorphous hydrazide copolymers formed flexible and tough films by solvent casting. The amorphous hydrazide copolymers had glass‐transition temperatures (Tg) between 187 and 233 °C. All hydrazide copolymers could be thermally converted into the corresponding oxadiazole copolymers approximately in the region of 250–400 °C, as evidenced by the DSC thermograms. The oxadiazole copolymers showed a significantly decreased solubility when compared to their respective hydrazide precursors. They exhibited Tg's of 264–302 °C and did not show dramatic weight loss before 400 °C in air or nitrogen. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1599–1608, 2000  相似文献   

15.
A series of fluorinated poly(amide imide)s were prepared from 1,4‐bis(2′‐trifluoromethyl‐4′‐trimellitimidophenoxy)benzene and various aromatic diamines [3,3′,5,5′‐tetramethyl‐4,4′‐diaminediphenylmethane, α,α‐bis(4‐amino‐3,5‐dimethyl phenyl)‐3′‐trifluoromethylphenylmethane, 1,4‐bis(4′‐amino‐2′‐trifluoromethylphenoxy)benzene, 4‐(3′‐trifluoromethylphenyl)‐2,6‐bis(3′‐aminophenyl)pyridine, and 1,1‐bis(4′‐aminophenyl)‐1‐(3′‐trifluoromethylphenyl)‐2,2,2‐trifluoroethane]. The fluorinated poly(amide imide)s, prepared by a one‐step polycondensation procedure, had good solubility both in strong aprotic solvents, such as N‐methyl‐2‐pyrrolidinone, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, and cyclopentanone, and in common organic solvents, such as tetrahydrofuran and m‐cresol. Strong and flexible polymer films with tensile strengths of 84–99 MPa and ultimate elongation values of 6–9% were prepared by the casting of polymer solutions onto glass substrates, followed by thermal baking. The poly(amide imide) films exhibited high thermal stability, with glass‐transition temperatures of 257–266 °C and initial thermal decomposition temperatures of greater than 540 °C. The polymer films also had good dielectric properties, with dielectric constants of 3.26–3.52 and dissipation factors of 3.0–7.7 × 10?3, and acceptable electrical insulating properties. The balance of excellent solubility and thermal stability associated with good mechanical and electrical properties made the poly(amide imide)s potential candidates for practical applications in the microelectronics industry and other related fields. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1831–1840, 2003  相似文献   

16.
Conjugated polymers alternatively involving m‐phenylenevinylene or p‐phenylenevinylene and a triphenylamine moiety in the main chain were synthesized via a Wittig–Horner‐type polycondensation of 4‐diformyl‐4′,4″‐dimethyl‐triphenylamine or 4‐diformyl‐4′,4″‐dimethoxy‐triphenylamine with m‐xylene‐bis(diethylphosphonate) or p‐xylene‐bis(diethylphosphonate). A high glass‐transition temperature (ca. 120 °C) and thermal stability (5% weight loss at temperatures greater than 450 °C) were observed for all polymers. These polymers, especially poly(methyltriphenylamine‐altp‐phenylenevinylene), fluoresced a strong green color under UV irradiation, with a quantum efficiency of 50% for their chloroform solutions. Cyclic voltammetry showed a relatively low ionization potential (5.18–5.44 eV) for the polymers. These results suggest that these polymers satisfied the requisites of polymer materials for a single‐layer light‐emitting diode. The aminium radical derived from the oxidation of poly(triphenylamine‐altm‐phenylenevinylene) satisfied both non‐Kekulé‐type π conjugation and ferromagnetic connectivity of the unpaired electrons and displayed a multiplet ground state. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4119–4127, 2000  相似文献   

17.
Thermoplastic polyamide elastomers were obtained by polymerization of aminobenzoyl‐substituted telechelics derived from poly(tetrahydrofuran)‐diols (number‐average molecular weight: 1400 or 2000 g mol?1) with several diacid dichlorides (terephthaloyl dichloride, 4,4′‐biphenyldicarbonyl dichloride, or 2,6‐naphthalenedicarbonyl dichloride) and chlorotrimethylsilane in N,N‐dimethylacetamide at 0–20 °C. The as‐prepared polymers had melting temperatures above 190 °C and exhibited elastic properties at room temperature, as evidenced by dynamic mechanical analysis and stress–strain measurements. The polymer with 2,6‐naphthalenedicarboxamide hard segments had the widest rubbery plateau within the series, the highest extension at break, and good recovery properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1449–1460, 2004  相似文献   

18.
Two new poly(phenylene vinylene)s containing m‐terphenyl or 2,6‐diphenylpyridine kinked units along the main chain were synthesized and were used as luminescent and laser materials. They were prepared from Heck coupling of 2,5‐didodecyloxy‐1,4‐divinylbenzene with 4,4″‐dibromo‐3′‐phenyl‐m‐terphenyl or 2,6‐di(4‐bromophenyl)‐4‐phenylpyridine. The kinked units along the main chain caused a partial interruption of the conjugation leading to emission at a shorter wavelength as compared with poly(p‐phenylene vinylene). The polymers presented blue‐green emission in solution and green‐yellow emission in the solid state with photoluminescence maxima at 465–497 and 546–550 nm, respectively. Polymer containing 2,6‐diphenylpyridine segments emitted at a longer wavelength than that containing m‐terphenyl and displayed higher quantum yields in solution (0.61 and 0.40, respectively). The influence of the solvent and polymer concentration on the photoluminescence characteristics was investigated. The photoluminescence properties of protonated polymer containing 2,6‐diphenylpyridine segments were investigated both in solution and in film. Amplified spontaneous emission and tunable laser action were also obtained from the two polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2214–2224, 2004  相似文献   

19.
A new bis(o‐aminophenol) with a crank and twisted noncoplanar structure and ether linkages, 2,2′‐bis(4‐amino‐3‐hydroxyphenoxy)biphenyl, was synthesized by the reaction of 2‐benzyloxy‐4‐fluoronitrobenzene with biphenyl‐2,2′‐diol, followed by reduction. Biphenyl‐2,2′‐diyl‐containing aromatic poly(ether benzoxazole)s with inherent viscosities of 0.52–1.01 dL/g were obtained by a conventional two‐step procedure involving the polycondensation of the bis(o‐aminophenol) monomer with various aromatic dicarboxylic acid chlorides, yielding precursor poly(ether o‐hydroxyamide)s, and subsequent thermal cyclodehydration. These new aromatic poly(ether benzoxazole)s were soluble in methanesulfonic acid, and some of them dissolved in m‐cresol. The aromatic poly(ether benzoxazole)s had glass‐transition temperatures of 190–251 °C and were stable up to 380 °C in nitrogen, with 10% weight losses being recorded above 520 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2656–2662, 2002  相似文献   

20.
A series of three new 1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole‐based polymers such as poly[1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole] ( PTPT ), poly[1,4‐(2,5‐bis(octyloxy)phenylene)‐alt‐5,5'‐(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole)] ( PPTPT ), and poly[2,5‐(3‐octylthiophene)‐alt‐5,5'‐(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole)] ( PTTPT ) were synthesized and characterized. The new polymers were readily soluble in common organic solvents and the thermogravimetric analysis showed that the three polymers are thermally stable with the 5% degradation temperature >379 °C. The absorption maxima of the polymers were 478, 483, and 485 nm in thin film and the optical band gaps calculated from the onset wavelength of the optical absorption were 2.15, 2.20, and 2.13 eV, respectively. Each of the polymers was investigated as an electron donor blending with PC70BM as an electron acceptor in bulk heterojunction (BHJ) solar cells. BHJ solar cells were fabricated in ITO/PEDOT:PSS/polymer:PC70BM/TiOx/Al configurations. The BHJ solar cell with PPTPT :PC70BM (1:5 wt %) showed the power conversion efficiency (PCE) of 1.35% (Jsc = 7.41 mA/cm2, Voc = 0.56 V, FF = 33%), measured using AM 1.5G solar simulator at 100 mW/cm2 light illumination. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号