首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《先进技术聚合物》2018,29(8):2184-2191
Polymers that can respond reversibly by changing their physical or chemical properties are recognized as stimuli‐responsive polymers. The renowned temperature‐sensitive polymer is poly(N‐isopropyl acrylamide) (p(NIPAM)), and here, homopolymeric supermacroporous p(NIPAM)) cryogel was synthesized via cryopolymerization technique at cryogenic condition (below melting point of solvent, −18°C). Then, the prepared p(NIPAM) cryogel was characterized via scanning electron microscopy, Fourier transform infrared radiation spectrometer, and thermogravimetric analyzer. The lower critical solution temperature (LCST) value of the prepared p(NIPAM) cryogel was determined from % swelling equilibrium swellings at various temperatures, 20, 25, 30, 35, 40, 45, and 50°C, respectively. Furthermore, the pore volume and porosity of p(NIPAM) cryogels were compared below and above the LCST values. Finally, the separation capability of p(NIPAM) cryogels for some molecules such as tannic acid, gallic acid, nicotine (N), and caffeine (C) was investigated at the below and above the LCST values.  相似文献   

2.
Providing catechol‐end functionality to controlled structure lower critical solution temperature (LCST) copolymers is attractive, given the versatility of catechol chemistry for tethering to nanostructures. Controlled polymer chain lengths with catechol RAFT end groups are of interest to provide tunable LCST behavior to nanoparticles, although these polymerizations are relatively unexplored. Herein, the reactivity ratios for the RAFT copolymerization of N,N‐dimethylacrylamide (DMAm) and N‐isopropylacrylamide (NIPAM) pairs based on catechol‐end RAFT agents using an in situ NMR technique were first determined. Several catechol‐end poly(DMAm‐co‐NIPAM) samples were then prepared using the RAFT agent to provide copolymer. The reactivity ratios for the DMAm‐NIPAM pair were rDMAm = 1.28–1.31 and rNIPAM = 0.48–0.51. All the poly(DMAm‐co‐NIPAM) samples were found to have Mn values ≤ 26 kDa and Ð < 1.08 with LCST values ranging from 31 to 92°C, while maintaining a short range of glass transition temperature (Tg = 118–137°C). The difference in LCST values for the catechol functionalized poly(DMAm‐co‐NIPAM) based on 0.5 wt% aqueous buffered solutions at pH 5.5 and 8.5 was found to be <3.0°C. These conditions are suitable for subsequent catechol‐induced coordination and nucleophilic addition chemistry for covalent and noncovalent linkages during subsequent post‐modification. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 4062–4070  相似文献   

3.
The effects of polymer concentration, temperature, and surfactant on the rheological properties of poly(N-isopropylacrylamide), poly NIPAM, were studied. Below 28°C the viscosity decreased with increasing temperature according to the Arrhenius expression. However, at 29°C the viscosity increased to a maximum value at 32°C, the lower critical solution temperature (LCST) for aqueous polyNIPAM. Higher temperatures gave a much lower viscosity. This unusual rheological behavior was explained by the phase behavior of the polymer. Sodium dodecyl sulfate (SDS) binding to polyNIPAM increased the cloud point temperature (CPT) and attenuated the unusual rheological behavior of polyNIPAM in water. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
N–Isopropylacrylamide (NIPAM) was polymerized using 1‐pyrenyl 2‐chloropropionate (PyCP) as the initiator and CuCl/tris[2‐(dimethylamino)ethyl]amine (Me6TREN) as the catalyst system. The polymerizations were performed using the feed ratio of [NIPAM]0/[PyCP]0/[CuCl]0/[Me6TREN]0 = 50/1/1/1 in DMF/water of 13/2 at 20 °C to afford an end‐functionalized poly(N‐isopropylacrylamide) with the pyrenyl group (Py–PNIPAM). The characterization of the Py–PNIPAM using matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry provided the number–average molecular weight (Mn,MS). The lower critical solution temperature (LCST) for the liquid–solid phase transition was 21.7, 24.8, 26.5, and 29.3 °C for the Py–PNIPAMs with the Mn,MS's of 3000, 3400, 4200, and 5000, respectively; hence, the LCST was dramatically lowered with the decreasing Mn,MS. The aqueous Py–PNIPAM solution below the LCST was characterized using a static laser light scattering (SLS) measurement to determine its molar mass, Mw,SLS. The aqueous solutions of the Py–PNIPAMs with the Mn,MS's of 3000, 3400, 4200, and 5000 showed the Mw,SLS of 586,000, 386,000, 223,000, and 170,000, respectively. Thus, lowering the LCST for Py–PNIPAM should be attributable to the formation of the PNIPAM aggregates. The LCST of 21.7 °C for Py–PNIPAM with the Mn,MS of 3000 was effectively raised by adding β‐cyclodextrin (β‐CD) and reached the constant value of ~26 °C above the molar ratio of [β‐CD]/[Py–PNIPAM] = 2/1, suggesting that β‐CD formed an inclusion complex with pyrene in the chain‐end to disturb the formation of PNIPAM aggregates, thus raising the LCST. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1117–1124, 2006  相似文献   

5.
A method was developed to enable the formation of nanoparticles by reversible addition–fragmentation chain transfer polymerization. The thermoresponsive behavior of polymeric micelles was modified by means of micellar inner cores and an outer shell. Polymeric micelles comprising AB block copolymers of poly(N‐isopropylacrylamide) (PIPAAm) and poly(2‐hydroxyethylacrylate) (PHEA) or polystyrene (PSt) were prepared. PIPAAm‐b‐PHEA and PIPAAm‐b‐PSt block copolymers formed a core–shell micellar structure after the dialysis of the block copolymer solutions in organic solvents against water at 20 °C. Upon heating above the lower critical solution temperature (LCST), PIPAAm‐b‐PHEA micelles exhibited an abrupt increase in polarity and an abrupt decrease in rigidity sensed by pyrene. In contrast, PIPAAm‐b‐PSt micelles maintained constant values with lower polarity and higher rigidity than those of PIPAAm‐b‐PHEA micelles over the temperature range of 20–40 °C. Structural deformations produced by the change in the outer polymer shell with temperature cycles through the LCST were proposed for the PHEA core, which possessed a lower glass‐transition temperature (ca. 20 °C) than the LCST of the PIPAAm outer shell (ca. 32.5 °C), whereas the PSt core with a much higher glass‐transition temperature (ca. 100 °C) retained its structure. The nature of the hydrophobic segments composing the micelle inner core offered an important control point for thermoresponsive drug release and the drug activity of the thermoresponsive polymeric micelles. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3312–3320, 2006  相似文献   

6.
The synthesis of a thermoresponsive hydrogel of poly(glycidyl methacrylate‐coN‐isopropylacrylamide) (PGMA‐co‐PNIPAM) and its application as a nanoreactor of gold nanoparticles are studied. The thermoresponsive copolymer of PGMA‐co‐PNIPAM is first synthesized by the copolymerization of glycidyl methacrylate and N‐isopropylacrylamide using 2,2′‐azobis(isobutyronitrile) as an initiator in tetrahydrofuran at 70 °C and then crosslinked with diethylenetriamine to form a thermoresponsive hydrogel. The lower critical solution temperature (LCST) of the thermoresponsive hydrogel is about 50 °C. The hydrogel exists as 280‐nm spheres below the LCST. The diameter of the spherical hydrogel gradually decreases to a minimum constant of 113 nm when the temperature increases to 75 °C. The hydrogel can act as a nanoreactor of gold nanoparticles because of the coordination of nitrogen atoms of the crosslinker with gold ions, on which a hydrogel/gold nanocomposite is synthesized. The LCST of the resultant hydrogel/gold nanocomposite is similar to that of the hydrogel. The size of the resultant gold nanoparticles is about 15 nm. The hydrogel/gold nanocomposite can act as a smart and recyclable catalyst. At a temperature below the LCST, the thermoresponsive nanocomposite is a homogeneous and efficient catalyst, whereas at a temperature above the LCST, it becomes a heterogeneous one, and its catalytic activity greatly decreases. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2812–2819, 2007  相似文献   

7.
Photoreactive and thermoresponsive N‐isopropylacrylamide (NIPAM)–surfmer copolymer hydrogels containing 4,4′‐di(6‐sulfato‐hexyloxy)azobenzene (DSHA) dianions are described. The functional hydrogels are obtained in a two steps. First a micellar aqueous solution of (11‐(acryloyloxy)undecyl)trimethylammonium bromide (AUTMAB) and NIPAM is exposed to 60Co‐gamma irradiation, and a thermoresponsive copolymer gel is obtained. Second, DSHA is included by shrinking the gel at 50 °C and subsequent reswelling in an aqueous solution of DSHA disodium salt at 20 °C. Reswelling is accompanied by electrostatic adsorption of DSHA dianions at the positively charged AUTMAB headgroups replacing the bromide ions. Gels containing trans‐DSHA are transparent yellow at room temperature (λmax = 370 nm), while gels containing cis‐rich DSHA are orange (λmax = 460 and 330 nm). Energy dispersive X‐ray measurements indicate that 41% of the bromide ions are exchanged if trans‐DSHA is used for adsorption, and only 7.5% if cis‐DSHA is used. The incorporation of DSHA lowers the lower critical solution temperature (LCST) from 34 to 32 °C. Below the LCST, DSHA can be switched from the trans‐ to the cis‐rich state and vice versa upon irradiation with UV (λ = 366 nm) or visible light (λ ≥ 450 nm). Above the LCST no photoreaction takes place.  相似文献   

8.
The article describes synthesis and thermally triggered self‐assembly of a Poly (ethylene oxide)‐block‐poly (N‐insopropylacrylamide) (PEO‐b‐PNIPAm) in aqueous medium. At rt, the polymer remains as unimer, however, at lower critical solution temperature (LCST) of PNIPAm (32 °C), it forms a rather large undefined aggregate which at slightly elevated temperature (~40 °C) converges to well defined polymersome structure (Critical aggregation concentration = 0.45 mg/mL) with hydrodynamic diameter of 40–50 nm. By lowering the temperature, initial swelling of the compact vesicle followed by reversible disassembly to unimer was noticed. The polymersome exhibits encapsulation ability to a hydrophilic dye Calcein which can be spontaneously released by lowering the temperature below cloud point. Likewise a hydrophobic dye namely 8‐Anilino‐1‐naphthalenesulfonic acid (ANS) can also be encapsulated and released by thermal trigger. Detail photoluminescence studies reveal ANS dye can be used as a generalized probe molecule for detecting LCST of a thermoresponsive polymer by “fluorescence on” above LCST even by cursory observation. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2444–2451  相似文献   

9.
A novel method used for the preparation of poly(N‐isopropylacrylamide) (PNIPAAm) films of varying crosslink density under homogeneous/heterogeneous conditions is described in this paper. Photopolymerization of the N‐isopropylacrylamide (NIPAAm) monomer in water (homogeneous at ~7°C and heterogeneous at ~40°C) or a mixture of water/ethanol (50:50, heterogeneous at ~7°C) was carried out using 1‐[4‐(2‐hydroxyethoxy)‐phenyl]‐2‐hydroxy‐2‐methyl‐1‐propane‐1‐one (hydrophilic) or 2‐hydroxy‐2‐methyl propiophenone (hydrophobic) photo‐initiator. In order to investigate the effect of temperature and crosslink density, polymerization was carried out at ~7°C [below lower critical soluble temperature (LCST)] and ~40°C (above LCST) using varying amounts of N,N′‐methylene bisacrylamide (BIS) ranging from 1–4 wt%. Degree of swelling (determined by optical microscopy), phase transition temperature [determined by differential scanning calorimetry (DSC)] as well as morphology (scanning electron microscopy) were found to be dependent on solvent system (homogeneous/heterogeneous), temperature of polymerization and crosslink density. Hydrogels prepared at ~7°C using hydrophobic photo‐initiator and water/ethanol (50:50) as solvent, showed much higher degree of swelling at all levels of crosslink density as compared to hydrogel prepared at ~7°C using hydrophilic photo‐initiator and water as solvent. Hydrogels were used for patterning which may find applications in microfluidic devices. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Novel biodegradable poly(carbonate‐ether)s (PCEs) with lower critical solution temperature (LCST) at body temperature were synthesized by copolymerization of CO2 and ethylene oxide (EO) under double metal cyanide (DMC) catalyst. The PCEs showed carbonate unit (CU) content of 1.0–42.4 mol % and molecular weight of 2.7–247 kg/mol, which exhibited reversible thermoresponsive feature in deionized water with LCST in a broad window from 21.5 to 84.1 °C. The LCST was highly sensitive to the CU content and the molecular weight of PCEs, and it showed a linear relation with CU content for PCEs with similar molecular weight. In particular, aqueous solution of PCE with a 26.0 mol % of CU showed an LCST around 36.1 °C, which was very close to the body temperature. Interestingly, it was found that the phase transition behavior changed with PCE concentration. For PCE with Mn of 2.7 kg/mol and CU content of 30.0 mol %, the LCST increased from 21.5 to 36.7 °C when the PCE concentration changed from 10 to 1 g/L. Dynamic light scattering indicated that the phase transition was possibly due to a coil‐to‐globule transition. The thermoresponsive biodegradable PCE with LCST at body temperature is promising for biomedical applications, especially for in vivo applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

11.
A series of random copolymers of N‐isopropylacrylamide (NIPAM) and sodium 2‐acrylamido‐2‐methyl‐1‐propanesulphonate (AMPS) was synthesized by free‐radical copolymerization. The content of AMPS in the copolymers ranged from 1.1 to 9.6 mol %. The lower critical‐solution temperature (LCST) of copolymers in water increased strongly with an increasing content of AMPS. The influence of polymer concentration on the LCST of the copolymers was studied. For the copolymers with a higher AMPS content, the LCST decreased faster with an increasing concentration than for copolymers with a low content of AMPS. For a copolymer containing 1.1 mol % of AMPS the LCST dropped by about 3 °C when the concentration increased from 1 to 10 g/L, whereas for a copolymer containing 9.6 mol % of AMPS the LCST dropped by about 10 °C in the concentration range from 2 to 10 g/L. It was observed that the ionic strength of the aqueous polymer solution very strongly influences the LCST. This effect was most visible for the copolymer with the highest content of AMPS (9.6 mol %) for which an increase in the ionic strength from 0.2 to 2.0 resulted in a decrease in the LCST by about 27 °C (from 55 to 28 °C), whereas for the copolymer containing 1.1 mol % of AMPS the LCST decreased only by about 6 °C (from 37 to 31 °C) when the ionic strength increased from 0.005 to 0.3. The reactivity ratios for the AMPS and NIPAM monomer pairs were determined using different methods. The values of rAMPS and rNIPAM obtained were 11.0–11.6 and 2.1–2.4, respectively. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2784–2792, 2001  相似文献   

12.
The single‐electron transfer living radical polymerization (SET‐LRP) method in the presence of chain transfer agent was used to synthesize poly(N‐isopropylacrylamide) [poly(NIPAM)] with a low molecular weight and a low polydispersity index. This was achieved using Cu(I)/2,2′‐bipyridine as the catalyst, 2‐bromopropionyl bromide as the initiator, 2‐mercaptoethanol as the chain transfer agent (TH), and N,N‐dimethylformamide (DMF) as the solvent at 90 °C. The copper nanoparticles with diameters of 16 ± 3 nm were obtained in situ by the disproportionation of Cu(I) to Cu(0) and Cu(II) species in DMF at 22 °C for 24 h. The molecular weights of poly(NIPAM) produced were significantly higher than the theoretical values, and the polydispersities were less than 1.18. The chain transfer constant (Ctr) was found to be 0.051. Although the kinetic analysis of SET‐LRP in the presence of TH corroborated the characteristics of controlled/living polymerization with pseudo‐first‐order kinetic behavior, the polymerization also exhibited a retardation period (k > ktr). The influence of molecular weight on lower critical solution temperature (LCST) was investigated by refractometry. Our experimental results explicitly elucidate that the LCST values increase slightly with decreasing molecular weight. Reversibility of solubility and collapse in response to temperature well correlated with increased molecular weight of poly(NIPAM). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
A series of poly(N‐isopropylacrylamide‐coN‐hydroxymethylacrylamide) P(NIPAM‐co‐NHMA) copolymers were firstly synthesized via free radical polymerization. Then, the hydrophobic, photosensitive 2‐diazo‐1,2‐naphthoquinone (DNQ) molecules were partially and randomly grafted onto P(NIPAM‐co‐NHMA) backbone through esterification to obtain a triple‐stimuli (photo/pH/thermo) responsive copolymers of P(NIPAM‐co‐NHMA‐co‐DNQMA). UV‐vis spectra showed that the lower critical solution temperature (LCST) of P(NIPAM‐co‐NHMA) ascended with increasing hydrophilic comonomer NHMA molar fraction and can be tailored by pH variation as well. The LCST of the P(NIPAM‐co‐NHMA) went down firstly after DNQ modification and subsequently shifted to higher value after UV irradiation. Meanwhile, the phase transition profile of P(NIPAM‐co‐NHMA‐co‐DNQMA) could be triggered by pH and UV light as expected. Thus, a triple‐stimuli responsive copolymer whose solution properties could be, respectively, modulated by temperature, light, and pH, has been achieved. These stimuli‐responsive properties should be very important for controlled release delivery system. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2763–2773, 2009  相似文献   

14.
Organic/inorganic hybrid amphiphilic block copolymer poly(methacrylate isobutyl POSS)‐b‐poly(N‐isopropylacrylamide‐co‐oligo(ethylene glycol) methyl ether methacrylate) (PMAPOSS‐b‐P(NIPAM‐co‐OEGMA)) was synthesized via reversible addition–fragmentation chain transfer polymerization. The self‐assembly behavior of this block copolymer in aqueous solution was investigated by dynamic light scattering (DLS) and transmission electron microscopy. The results indicate that the novel block copolymer can self‐assemble into spherical micelles with PMAPOSS segment as the hydrophobic part and P(NIPAM‐co‐OEGMA) segment as the hydrophilic part. The temperature‐responsive characteristics of the assemblies were tested by UV–Vis spectra and DLS. Some factors such as the concentration, molecular weight, and copolymer generation that may affect the cloud point were studied systematically. The results reveal that this copolymer exhibits a sharp and intensive lower critical solution temperature (LCST). The essentially predetermined LCST can be conveniently achieved by adjusting the content of NIPAM or OEGMA domain. In addition, these novel hybrid micelles can undergo an association/disassociation cycle with the heating and cooling of solution and the degree of reversibility displaying a tremendous concentration dependence, as a novel organic/inorganic hybrid material with distinctive virtues can be potentially used in biological and medical fields, especially in drug nanocarriers for targeted therapy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Linear and crosslinked polymers based on N‐isopropylacrylamide (NIPAAm) exhibit unusual thermal properties. Aqueous solutions of poly(N‐isopropylacrylamide) (PNIPAAm) phase‐separate upon heating above a lower critical solution temperature (LCST), whereas related hydrogels undergo a swelling–shrinking transition at an LCST. A linear copolymer made of NIPAAm/acryloxysuccinimide (98/2 mol/mol) and two hydrogels with different hydrophilicities were prepared. Fourier transform infrared (FTIR) spectroscopy was employed to determine the transition temperature and provide insights into the molecular details of the transition via probing of characteristic bands as a function of temperature. The FTIR spectroscopy method described here allowed the determination of the transition temperature for both the linear and crosslinked polymers. The transition temperatures for PNIPAAm and the gel resulting from the crosslinking with polylysine or N,N′‐methylenebisacrylamide (MBA) were in the same range, 30–35 °C. For the gels, the transition temperature increased with the hydrophilicity of the polymer matrix. The spectral changes observed at the LCST were similar for the free chains and the hydrogels, implying a similar molecular reorganization during the transition. The C H stretching region suggests that the N‐isopropyl groups and the backbone both underwent conformational changes and became more ordered upon heating above the LCST. An analysis of the amide I band suggests that the amide groups of the linear polymer were mainly involved in hydrogen bonding with water molecules below the LCST, the chain being flexible and disordered in a water solution. During the transition, around 20% of these intermolecular hydrogen bonds between the polymer and water were broken and replaced by intramolecular hydrogen bonds. Similar changes were also observed at the LCST of a gel crosslinked with MBA. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 907–915, 2000  相似文献   

16.
Thermosensitive diethylene glycol‐derived poly(L ‐glutamate) homopolypeptides (i.e., poly‐L ‐EG2‐Glu) with different molecular weights (MW) (Mn,GPC = 5380–32520) were synthesized via the ring‐opening polymerization (ROP) of EG2‐L ‐glutamate N‐carboxyanhydride (EG2‐Glu‐NCA) in N,N‐dimethylformamide solution at 50 °C. Their molecular structure, conformation transition, liquid crystal (LC) phase behavior, lower critical solution temperature (LCST) transition, and morphology evolution were thoroughly characterized by means of FTIR, 1H NMR, gel permeation chromatography, differential scanning calorimetry, wide angle X‐ray diffraction, polarized optical microscope, transmission electron microscope, and dynamic light scattering. In solid state, the homopolypeptide poly‐L ‐EG2‐Glu presented a conformation transition from α‐helix to β‐sheet with increasing their MW at room temperature, while it mainly assumed an α‐helix of 80–86% in aqueous solution. Poly‐L ‐EG2‐Glu showed a thermotropic LC phase with a transition temperature of about 100 °C in solid state, while it gave a reversible LCST transition of 34–36 °C in aqueous solution. The amphiphilic homopolypeptide poly‐L ‐EG2‐Glu self‐assembled into nanostructures in aqueous solution, and their critical aggregation concentrations decreased with increasing MW. Interestingly, their morphology changed from spherical micelles to worm‐like micelles, then to fiber micelles with increasing MW. This work provides a simple method for the generation of different nanostructures from a thermosensitive biodegradable homopolypeptide. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
A series of comb polymers consisting of a methacrylate backbone and poly(2‐ethyl‐2‐oxazoline) (PEtOx) side chains was synthesized by a combination of cationic ring‐opening polymerization and reversible addition–fragmentation chain transfer polymerization. Small‐angle neutron scattering (SANS) studies revealed a transition from an ellipsoidal to a cylindrical conformation in D2O around a backbone degree of polymerization of 30. Comb‐shaped PEtOx has lowered Tg values but a similar elution behavior in liquid chromatography under critical conditions in comparison to its linear analog was observed. The lower critical solution temperature behavior of the polymers was investigated by turbidimetry, dynamic light scattering, transmission electron microscopy, and SANS revealing decreasing Tcp in aqueous solution with increasing molar mass, the presence of very few aggregated structures below Tcp, a contraction of the macromolecules at temperatures 5 °C above Tcp but no severe conformational change of the cylindrical structure. In addition, the phase diagram including cloud point and coexistence curve was developed showing an LCST of 75 °C of the binary mixture poly[oligo(2‐ethyl‐2‐oxazoline)methacrylate]/water. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

18.
We report a thermoresponsive poly(N‐isopropylacrylamide) (PNIPAM) brush functionalized Janus Au–Pt bimetallic micromotor capable of modulating the direction of motion with the change of the ambient temperature. The PNIPAM@Au–Pt micromotor moved along the Au–Pt direction with a speed of 8.5 μm s?1 in 1.5 % H2O2 at 25 °C (below the lower critical solution temperature (LCST) of PNIPAM), whereas it changed the direction of motion (i.e., along the Pt–Au direction) and the speed decreased to 2.3 μm s?1 at 35 °C (above LCST). Below LCST, PNIPAM brushes grafted on the Au side were hydrophilic and swelled, which permitted the electron transfer and proton diffusion on the Au side, and thus the motion is regarded as a self‐electrophoretic mechanism. However, PNIPAM brushes above LCST became hydrophobic and collapsed, and thus the driving mechanism switched to the self‐diffusiophoresis like that of Pt‐modified Janus silica motors. These motors could reversibly change the direction of motion with the transition of the hydrophobic and hydrophilic states of the grafted PNIPAM brushes. Such a thermoresponsive polymer brush functionalization method provides a new strategy for engineering the kinematic behavior of phoretically driven micro/nanomotors.  相似文献   

19.
Classical molecular dynamics simulations were carried out to investigate the hydrophilic to hydrophobic transition of PNIPAM‐co‐PEGMA close to its lower critical solution temperature (LCST) in 1 M NaCl solution. PNIPAM‐co‐PEGMA is a copolymer of poly(N‐isopropylacrylamide) (PNIPAM) and poly(ethylene glycol) methacrylate (PEGMA). The copolymer consists of 38 monomer units of NIPAM with two PEGMA chains attached to the PNIAPM backbone. The PNIPAM‐co‐PEGMA was observed to go through the hydrophilic?hydrophobic conformational change for simulations at temperature slightly above its LCST. Na+ ions were found to bind strongly and directly with amide O, even more strongly with the O atoms on PEGAMS chains, whereas Cl? ions only exhibit weak interaction with the polymer. Significantly a novel caged stable metal‐organic complex involving a Na+ ion coordinated by six O atoms from the copolymer was observed after the PNIPAM‐co‐PEGMA copolymer went through conformational transition to form a hydrophobic folded structure. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

20.
Fully atomistic molecular dynamics simulations of poly(2‐[2‐methoxyethoxy]ethyl methacrylate) (PMEO2MA) in water at temperatures below and above its lower critical solution temperature (LCST) were performed to improve the understanding of its LCST behavior. Atomic trajectories were used to calculate various structural and dynamic properties. Simulation results show that PMEO2MA undergo a distinct coil‐to‐globule transition above LCST. Detailed analyses of the number of first hydration shell water molecules around various atomic regions are revealed that the water solubility of PMEO2MA below LCST is mainly provided by the hydrophobic hydration around the side chain carbon atoms. This is achieved by the cage‐like water network formations which are disrupted when the temperature is increased above LCST, accompanied by significant amount of water molecule release and local water‐ordering reduction, which leads to the LCST phase transition. Furthermore, other analyses such as the number of hydrogen bonds and hydrogen bond lifetimes suggest that intermolecular hydrogen bondings between polymer and water molecules have little effect on the phase transition. Our results will contribute to a better understanding on the LCST phase transition of oligo(ethylene glycol) methyl ether methacrylate (OEGMA)‐based homopolymers at atomistic level that will be useful when designing homo‐ and co‐polymers of OEGMAs with desired properties. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 429–441  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号