首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we construct a weakly‐nonlinear d'Alembert‐type solution of the Cauchy problem for the Boussinesq‐Klein‐Gordon (BKG) equation. Similarly to our earlier work based on the use of spatial Fourier series, we consider the problem in the class of periodic functions on an interval of finite length (including the case of localized solutions on a large interval), and work with the nonlinear partial differential equation with variable coefficients describing the deviation from the oscillating mean value. Unlike our earlier paper, here we develop a novel multiple‐scales procedure involving fast characteristic variables and two slow time scales and averaging with respect to the spatial variable at a constant value of one or another characteristic variable, which allows us to construct an explicit and compact d'Alembert‐type solution of the nonlinear problem in terms of solutions of two Ostrovsky equations emerging at the leading order and describing the right‐ and left‐propagating waves. Validity of the constructed solution in the case when only the first initial condition for the BKG equation may have nonzero mean value follows from our earlier results, and is illustrated numerically for a number of instructive examples, both for periodic solutions on a finite interval, and localized solutions on a large interval. We also outline an extension of the procedure to the general case, when both initial conditions may have nonzero mean values. Importantly, in all cases, the initial conditions for the leading‐order Ostrovsky equations by construction have zero mean, while initial conditions for the BKG equation may have nonzero mean values.  相似文献   

2.
This paper is the third in a series of several works devoted to the asymptotic and spectral analysis of a model of an aircraft wing in a subsonic air flow. This model has been developed in the Flight Systems Research Center of UCLA and is presented in the works by Balakrishnan. The model is governed by a system of two coupled integro‐differential equations and a two‐parameter family of boundary conditions modeling the action of the self‐straining actuators. The differential parts of the above equations form a coupled linear hyperbolic system; the integral parts are of the convolution type. The system of equations of motion is equivalent to a single operator evolution–convolution equation in the energy space. The Laplace transform of the solution of this equation can be represented in terms of the so‐called generalized resolvent operator, which is an operator‐valued function of the spectral parameter. This generalized resolvent operator is a finite‐meromorphic function on the complex plane having the branch cut along the negative real semi‐axis. Its poles are precisely the aeroelastic modes and the residues at these poles are the projectors on the generalized eigenspaces. In the first two papers (see [33, 34]) and in the present one, our main object of interest is the dynamics generator of the differential parts of the system. This generator is a non‐self‐adjoint operator in the energy space with a purely discrete spectrum. In the first paper, we have shown that the spectrum consists of two branches, and have derived their precise spectral asymptotics with respect to the eigenvalue number. In the second paper, we have derived the asymptotical approximations for the mode shapes. Based on the asymptotical results of the first two papers, in the present paper, we (a) prove that the set of the generalized eigenvectors of the aforementioned differential operator is complete in the energy space; (b) construct the set of vectors which is biorthogonal to the set of the generalized eigenvectors in the case when there might be not only eigenvectors but associate vectors as well; and (c) prove that the set of the generalized eigenvectors forms a Riesz basis in the energy space. To prove the main result of the paper, we made use of the Nagy–Foias functional model for non‐self‐adjoint operators. The results of all three papers will be important for the reconstruction of the solution of the original initial‐boundary‐value problem from its Laplace transform in the forthcoming papers. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
We consider the Navier–Stokes equations in an aperture domain of the three‐dimensional Euclidean space. We are interested in proving the existence of regular solutions corresponding to small initial data and flux through the aperture. The flux is assumed to be smooth and bounded on (0, +∞). As a consequence, we prove the existence of a time‐periodic solution corresponding to a time‐periodic flux through the aperture. Finally, we compare our solution with a solution belonging to a wider class, showing that, if such a solution does exist, then the two solutions coincide. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
The zero‐viscosity limit for an initial boundary value problem of the linearized Navier‐Stokes equations of a compressible viscous fluid in the half‐plane is studied. By means of the asymptotic analysis with multiple scales, we first construct an approximate solution of the linearized problem of the Navier‐Stokes equations as the combination of inner and boundary expansions. Next, by carefully using the technique on energy methods, we show the pointwise estimates of the error term of the approximate solution, which readily yield the uniform stability result for the linearized Navier‐Stokes solution in the zero‐viscosity limit. © 1999 John Wiley & Sons, Inc.  相似文献   

5.
A sufficient condition for blowup of solutions to a class of pseudo‐parabolic equations with a nonlocal term is established in this paper. In virtue of the potential wells method, we first extend the results obtained by Xu and Su in [J. Funct. Anal., 264 (12): 2732‐2763, 2013] to the nonlocal case and describe successfully the behavior of solutions by using the energy functional, Nehari functional, and the ground state energy of the stationary equation. Sequently, we study the boundedness and convergency of any global solution. Finally, we achieve a criterion to guarantee the blowup of solutions without any limit of the initial energy.Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
We study a problem for two-dimensional steady potential and isentropic Euler equations in a bounded domain, where an artificial detached shock interacts with a wedge. Using the stream function, we obtain a free boundary problem for the subsonic state and the detached artificial shock curve and we prove that such configuration admits a unique solution in certain weighted Hölder spaces. The proof is based on various Hölder and Schauder estimates for second-order elliptic equations and fixed point theorems. Moreover, we pose an energy principle and remark that the physical attached shock is the minimizer of the energy functional.  相似文献   

7.
Inspired by recent developments in Berdina‐like models for turbulence, we propose an inviscid regularization for the surface quasi‐geostrophic (SQG) equations. We are particularly interested in the celebrated question of blowup in finite time of the solution gradient of the SQG equations. The new regularization yields a necessary and sufficient condition, satisfied by the regularized solution, when a regularization parameter α tends to 0 for the solution of the original SQG equations to develop a singularity in finite time. As opposed to the commonly used viscous regularization, the inviscid equations derived here conserve a modified energy. Therefore, the new regularization provides an attractive numerical procedure for finite‐time blowup testing. In particular, we prove that, if the initial condition is smooth, then the regularized solution remains as smooth as the initial data for all times. © 2007 Wiley Periodicals, Inc.  相似文献   

8.
In this paper, we consider an initial boundary value problem for the 3‐dimensional nonhomogeneous incompressible magnetohydrodynamic equations with density‐dependent viscosity and resistivity coefficients over a bounded smooth domain. Global in time unique strong solution is proved to exist when the L2 norms of initial vorticity and current density are both suitably small with arbitrary large initial density, and the vacuum of initial density is also allowed. Finally, we revisit the Navier‐Stokes model without electromagnetic effect. We find that this initial boundary problem also admits a unique global strong solution under other conditions. In particular, we prove small kinetic‐energy strong solution exists globally in time, which extends the recent result of Huang and Wang.  相似文献   

9.
In this work, we consider a nonlinear coupled wave equations with initial‐boundary value conditions and nonlinear damping and source terms. Under suitable assumptions on the damping terms and source terms and initial data in the stable set, we obtain that the decay estimates of the energy function is exponential or polynomial by using Nakao's method. By using the energy method, we obtain the blow‐up result of solution with some positive or nonpositive initial energy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
This article deals with the shape reconstruction of a bounded domain with a viscous incompressible fluid driven by the time‐dependent Navier‐Stokes equations. For the approximate solution of the ill‐posed and nonlinear problem we propose a regularized Newton method. A theoretical foundation for the Newton method is given by establishing the differentiability of the initial boundary value problem with respect to the interior boundary curve in the sense of the domain derivative. Numerical examples indicate the feasibility of our method. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

11.
We establish the vanishing viscosity limit of the Navier‐Stokes equations to the isentropic Euler equations for one‐dimensional compressible fluid flow. For the Navier‐Stokes equations, there exist no natural invariant regions for the equations with the real physical viscosity term so that the uniform sup‐norm of solutions with respect to the physical viscosity coefficient may not be directly controllable. Furthermore, convex entropy‐entropy flux pairs may not produce signed entropy dissipation measures. To overcome these difficulties, we first develop uniform energy‐type estimates with respect to the viscosity coefficient for solutions of the Navier‐Stokes equations and establish the existence of measure‐valued solutions of the isentropic Euler equations generated by the Navier‐Stokes equations. Based on the uniform energy‐type estimates and the features of the isentropic Euler equations, we establish that the entropy dissipation measures of the solutions of the Navier‐Stokes equations for weak entropy‐entropy flux pairs, generated by compactly supported C2 test functions, are confined in a compact set in H?1, which leads to the existence of measure‐valued solutions that are confined by the Tartar‐Murat commutator relation. A careful characterization of the unbounded support of the measure‐valued solution confined by the commutator relation yields the reduction of the measurevalued solution to a Dirac mass, which leads to the convergence of solutions of the Navier‐Stokes equations to a finite‐energy entropy solution of the isentropic Euler equations with finite‐energy initial data, relative to the different end‐states at infinity. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
In this paper, we consider an initial‐boundary value problem for a parabolic equation with nonlinear boundary conditions. The solution to the problem can be expressed as a convolution integral of a Green's function and two unknown functions. We change the problem to a system of two nonlinear Volterra integral equations of convolution type. By using an explicit procedure on the basis of Sinc‐function properties, the resulting integral equations are replaced by a system of nonlinear algebraic equations, whose solution yields an accurate approximate solution to the parabolic problem. Some examples are considered to illustrate the ability of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
We prove global existence of a solution to an initial and boundary‐value problem for a highly nonlinear PDE system. The problem arises from a thermo‐mechanical dissipative model describing hydrogen storage by use of metal hydrides. In order to treat the model from an analytical point of view, we formulate it as a phase transition phenomenon thanks to the introduction of a suitable phase variable. Continuum mechanics laws lead to an evolutionary problem involving three state variables: the temperature, the phase parameter and the pressure. The problem thus consists of three coupled partial differential equations combined with initial and boundary conditions. The existence and regularity of the solutions are here investigated by means of a time discretization—textita priori estimates—passage to the limit procedure joined with compactness and monotonicity arguments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The paper is concerned with the controllability of fractional functional evolution equations of Sobolev type in Banach spaces. With the help of two new characteristic solution operators and their properties, such as boundedness and compactness, we present the controllability results corresponding to two admissible control sets via the well-known Schauder fixed point theorem. Finally, an example is given to illustrate our theoretical results.  相似文献   

15.
We prove an optimal‐order error estimate in a degenerate‐diffusion weighted energy norm for bilinear Galerkin finite element methods for two‐dimensional time‐dependent convection‐diffusion equations with degenerate diffusion. In the estimate, the generic constants depend only on certain Sobolev norms of the true solution but not the lower bound of the diffusion. This estimate, combined with a known stability estimate of the true solution of the governing partial differential equations, yields an optimal‐order estimate of the Galerkin finite element method, in which the generic constants depend only on the Sobolev norms of the initial and right side data. Preliminary numerical experiments were conducted to verify these estimates numerically. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

16.
General linear functional differential equations with infinite delay are considered. We first give an explicit criterion for positivity of the solution semigroup of linear functional differential equations with infinite delay and then a Perron‐Frobenius type theorem for positive equations. Next, a novel criterion for the exponential asymptotic stability of positive equations is presented. Furthermore, two sufficient conditions for the exponential asymptotic stability of positive equations subjected to structured perturbations and affine perturbations are provided. Finally, we applied the obtained results to problems of the exponential asymptotic stability of Volterra integrodifferential equations. To the best of our knowledge, most of the results of this paper are new.  相似文献   

17.
Here we present a new solution procedure for Helm-holtz and Laplacian Dirichlet screen and crack problems in IR2 via boundary integral equations of the first kind having as an unknown the jump of the normal derivative across the screen or a crack curve T. Under the assumption of local finite energy we show the equivalence of the integral equations and the original boundary value problem. Via the method of local Mellin transform in [5]-[lo] and the calculus of pseudodifferential operators we derive existence, uniqueness and regularity results for the solution of our boundary integral equations together with its explicit behaviour near the screen or crack tips.With our integral equations we set up a Galerkin scheme on T and obtain high quasi-optimal convergence rates by using special singular elements besides regular splines as test and trial functions.  相似文献   

18.
This work is concerned with a system of two wave equations with nonlinear damping and source terms acting in both equations. Under some restrictions on the nonlinearity of the damping and the source terms, we show that our problem has a unique local solution. Also, we prove that, for some restrictions on the initial data, the rate of decay of the total energy is exponential or polynomial depending on the exponents of the damping terms in both equations.  相似文献   

19.
In this paper, we consider the initial boundary value problem for a class of reaction‐diffusion systems with generalized coupled source terms. The assumption on the coupled source terms refers to the single equations and includes many kinds of polynomial growth cases. Under this assumption, the reaction‐diffusion systems have a variational structure, which is the foundation of constructing the potential wells to classify the initial data. In subcritical energy level and critical energy level, which are divided from potential well theory, the global existence solution, blow‐up in finite time solution, and asymptotic behavior of solution are obtained, respectively. Furthermore, we show the sufficient conditions of global well posedness with supercritical energy level by combining with comparison principle and semigroup theory.  相似文献   

20.
The stress distribution in a circular isotropie ring with a crack on part of the concentric circle is investigated. A system of functional equations governing the coefficients of the complex Fourier series expansion of the stresses acting on the circle on which the crack is located is obtained. The solution of the mentioned system of equations is obtained by using a factorization method, which permitted reduction of the initial system of equations to two coupled infinite systems of algebraic equations. The possibility of using the method of truncation to solve these systems is proved. The singularity originating in the neighborhood of ends of the crack in the formulas governing the stresses is isolated. Stress intensity coefficients for the effect of a uniform load on the external contour are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号