首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New evidence, obtained using a robust method for measuring the delta(15)N of NO(3)(-)-N in soil, is consistent with denitrification being the major determinant in the vertical distribution of NO(3)(-)-delta(15)N in soil profiles. These data also suggest that varying moisture regimes result in different effects of soil NO(3)(-)-N leaching on residual whole soil delta(15)N.  相似文献   

2.
To study patterns of root exudation, the effectiveness of different techniques for in situ 15N labeling of Brassica napus, Centaurea jacea and Lolium perenne with ammonium nitrate was tested. Stem infiltration was found to effectively label plants with thicker stems, whereas, for grass species, cutting and immersing the leaf tips into 15N solution proved to be most effective. A microdiffusion technique to isolate ammonium, combined with conventional cation-exchange chromatography to separate nitrate from amino-N compounds thereafter, was found suitable for separation of the N fractions of plant and soil extracts for 15N determination. All three species were then cultivated in nutrient solution and labeled with 15NH4 15NO3 by stem feeding for 42 hours. Kinetics of 15N labeling of bulk roots and shoots as well as hot water extractable material were assessed, and up to 1.1 at% 15N excess (APE) was found in nutrient solutions. The main amino acids exuded by L. perenne were glycine, serine, alanine and aspartic acid. To assess the suitability of this set of methods to study root exudation in field settings, L. perenne was grown without fertiliser addition in pots containing low-nutrient soil. Plants were 15N labeled via tip immersion and 15N and N concentrations were analysed in shoots, roots and soils during a 48-h interval. Shoots reached 1.25 APE, roots and soil 0.10 and 0.005 APE, respectively. Between 4% (48 h) and 6% (24 h) of total plant 15N was exuded by roots into the soil. In roots amino acids comprised the largest proportion of the soluble 15N pool, whereas soil 15N levels were similar for amino acids and ammonium, exceeding those of nitrate. Mechanisms for the shift within N fractions from roots to soils are briefly discussed.  相似文献   

3.
15N n.m.r. spectra of [13C-2, 3-15N2-guanidino]arginine and [13C, 15N2] urea were obtained in D2O and H2O at a variety of pH values both with and without proton decoupling. The effects of the proton exchange rate are readily observable in the proton coupled 15N spectra. When the guanidino group is deprotonated (pK = 12.5), the terminal nitrogens give a single resonance 6.6 ppm downfield of the protonated species, indicating a rapid tautomeric exchange. The observed NH and CN couplings are compared with calculated values, and good agreement is found for 1J(CN) using a Blizzard–Santry type calculation. The ramifications of the proton exchange on 15N n.m.r. spectra of amino acids and peptides are discussed.  相似文献   

4.
Quantifying the relative importance of denitrification and plant uptake to groundwater nitrate retention in riparian zones may lead to methods optimising the construction of riparian zones for water pollution control. The natural abundance of 15N in NO3- has been shown to be an interesting tool for providing insights into the NO3- retention processes occurring in riparian zones. In this study, 15N isotope fractionation (variation in delta15N of the residual NO3-) due to denitrification and due to plant uptake was measured in anaerobic soil slurries at different temperatures (5, 10 and 15 degrees C) and in hydroponic systems with different plant species (Lolium perenne L., Urtica dioica L. and Epilobium hirsutum L.). It was found that temperature had no significant effect on isotope fractionation during denitrification, which resulted in a 15N enrichment factor epsilonD of -22.5 +/- 0.6 per thousand. On the other hand, nitrate uptake by plants resulted in 15N isotope fractionation, but was independent of plant species, leading to a 15N enrichment factor epsilonP of -4.4 +/- 0.3 per thousand. By relating these two laboratory-defined enrichment factors to a field enrichment factor for groundwater nitrate retention during the growing season (epsilonR = -15.5 +/- 1.0 per thousand ), the contribution of denitrification and plant uptake to groundwater nitrate retention could be calculated. The relative importance of denitrification and plant uptake to groundwater nitrate retention in the riparian buffer zone was 49 and 51% during spring, 53 and 47% during summer, and 75 and 25% during autumn. During wintertime, high micropore dissolved organic carbon (DOC) concentrations and low redox potentials due to decomposition of the highly productive riparian vegetation probably resulted in a higher denitrification rate and favoured other nitrate retention processes such as nitrate immobilisation or dissimilatory nitrate reduction to ammonium (DNRA). This could have biased the 15N isotope fractionation and led to a low 15N enrichment factor for groundwater nitrate retention during wintertime (-6.2 +/- 0.9 per thousand ). In contradiction to what many other studies suggest, it is possible that due to plant decomposition during the winter period other nitrate transformation processes compete with denitrification.  相似文献   

5.
It was recently demonstrated spectroscopically that RNA/DNA nucleobases can bind to metal cations in aqueous solution through coordination bonds and covalent bonds. Nitrogen-15 ((15)N) NMR spectroscopy was employed and shown to be a powerful tool for determining the mode of metal ion binding to nitrogen atoms in RNA/DNA molecules. This review describes (15)N NMR spectroscopic characteristics in accordance with the mode of metal ion binding to nitrogen atoms. The general rules for (15)N chemical shift changes, which are applicable to the determination of the metal ion binding mode of N-metallated compounds, are also described.  相似文献   

6.
《Chemical physics letters》1986,126(6):481-486
Several microwave transitions of O15N…NO2 and ON…15NO2 have been measured under high resolution using a pulsed-nozzle Fourier transform spectrometer. The 14N quadrupole coupling constants in the inertial axis system have been determined for both nitrogen atoms. The quadrupole coupling constants for ON …15NO2 are eQqaa = −0.5203(20) and eQqbb = −4.1981(19) MHz, and for O15N…NO2 are eQqaa= −1.7999(13) and eQqbb = 0.0808(17) MHz. The 14N quadrpole coupling constants determined by Kukolich for the main species ON…NO2 should be reversed with respect to the NO and NO2 groups. Combining the present data with the main species constants allows the complete quadrupole coupling tensor to be estimated for the NO2 group; the tensor in N2O3 lies within 2° of the N…N bond direction and within 0.4° of the bisector of the ONO angle. Spin-rotation effects are significant for nitrogen in the NO group; Caa is determined to be 8 ± 2 kHz for 14N in ON…15NO2 and −15 ± 3 kHz for 15N obtained directly from splittings in the spectrum of O15N… 15NO2.  相似文献   

7.
《Tetrahedron》1988,44(20):6367-6372
A chemical synthesis of 6-15N and 1-15N AMPs from 5'-O-acety1-2',3'-O-isopropylideneinosine is reported.  相似文献   

8.
9.
10.
11.
The reactions of labeled N15NO+ with CO, NO, O2, 18O2, N2, NO2, and N2O have been investigated using a tandem ICR instrument. In each case the total rate coefficient, product distribution, and kinetic energy dependence were measured. The results indicate that very specific reaction mechanisms govern these reactions. This conclusion is suggested by the lack of isotopic scrambling in many cases and by the complete absence of energetically allowed products in almost all of the systems. The kinetic energy studies indicate that most of the reaction channels proceed through an intermediate complex at low energies and via a direct mechanism at higher kinetic energies. Such direct mechanisms include long range charge transfer and atom or ion transfer.  相似文献   

12.
The 13C,15N coupling constants in three 1,2,4-triazine-4-15N derivatives and in a substituted pyrimidine-1-15N have been determined and are compared with those in pyridine and quinoline. Of special interest are the data of the 5-(2-dimethylamino-1-propenyl)-3,6-dimethyl-1,2,4-triazine-4-15N, since one observes a characteristic alternation of the absolute value of J(13C,15N) along the sidechain and a hitherto unobserved very large 13C,15N coupling constant through four bonds of 3·9 Hz, the origin of which is attributed to the influence of the lone pair orbital on the 15N at position 4.  相似文献   

13.
The reactive uptake coefficients (γ) of O(3), NO(2), N(2)O(5), and NO(3) by levoglucosan, abietic acid, nitroguaiacol, and an atmospherically relevant mixture of those species serving as surrogates for biomass burning aerosol have been determined employing a chemical ionization mass spectrometer coupled to a rotating-wall flow-tube reactor. γ of O(3), NO(2), N(2)O(5), and NO(3) in the presence of O(2) are in the range of 1-8 × 10(-5), <10(-6)-5 × 10(-5), 4-6 × 10(-5), and 1-26 × 10(-3), respectively, for the investigated organic substrates. Within experimental uncertainties the uptake of NO(3) was not sensitive to relative humidity levels of 30 and 60%. NO(3) uptake experiments involving substrates of levoglucosan, abietic acid, and the mixture exhibit an initial strong uptake of NO(3) followed by NO(3) gas-phase recovery as a function of NO(3) exposure. In contrast, the uptake of NO(3) by nitroguaiacol continuously proceeds at the same efficiency for investigated NO(3) exposures. The derived oxidative power, i.e. the product of γ and atmospheric oxidant concentration, for applied oxidants is similar or significantly larger in magnitude than for OH, emphasizing the potential importance of these oxidants for particle oxidation. Estimated atmospheric lifetimes for the topmost organic layer with respect to O(3), NO(2), N(2)O(5), and NO(3) oxidation for typical polluted conditions range between 1-112 min, indicating the potential for significant chemical transformation during atmospheric transport. The contact angles determined prior to, and after heterogeneous oxidation by NO(3), representative of 50 ppt for 1 day, do not decrease and thus do not indicate a significant increase in hygroscopicity with potential impacts on water uptake and cloud formation processes.  相似文献   

14.
Raman spectra of HNO(3).NO(2) have been detected on liquid and solid surfaces in the presence of concentrated HNO(3) and NO(2) gas. The Raman spectrum of HNO(3) solutions containing N(2)O(4) has been partly reinterpreted in terms of contributions from HNO(3).N(2)O(4) and N(2)O(4).NO(3)(-) complexes.  相似文献   

15.
A new monoxanthen‒9‒yl derivative of urea has been synthesized and the structure of this product (N‒9 H‒xanthen‒9‒ylurea) and that of the previously known N,N′‒di‒9 H‒xanthen‒9‒ylurea have been proved by 15N NMR and other spectroscopic techniques. A series of 13C and 15N labeled urea derivatives has been prepared and the utility of their 13C and 15N chemical shifts and coupling constants in the structural analysis of urea derivatives has been investigated.  相似文献   

16.
[reaction: see text] An efficient route to deoxyadenosine derivatives labeled on both the amino group and nitrogen 1 is uncovered. First, 3',5'-di-O-acetyl-2'-deoxy-1-(2-nitrobenzenesulfonyl)inosine (2a) and only 1.1 equiv of (15)NH4Cl are used for labeling position 1 (1a) through the isolation of the open intermediate and its cyclization with DBU in anhydrous CH3CN. Inosine 1a is then converted to [N,1-(15)N2]-3',5'-di-O-acetyl-N6-benzoyl-2'-deoxyadenosine (5a, the precursor of 6a) via a Pd/dppf-catalyzed chloride-to-benzamide replacement, by using again only 1.1 equiv of the labeling source.  相似文献   

17.
Calculations were performed to determine the structures, energetics, and spectroscopy of the atmospherically relevant complexes (HNO(3)).(NO(2)), (HNO(3)).(N(2)O(4)), (NO(3)(-)).(NO(2)), and (NO(3)(-)).(N(2)O(4)). The binding energies indicate that three of the four complexes are quite stable, with the most stable (NO(3)(-)).(N(2)O(4)) possessing binding energy of almost -14 kcal mol(-1). Vibrational frequencies were calculated for use in detecting the complexes by infrared and Raman spectroscopy. An ATR-FTIR experiment showed features at 1632 and 1602 cm(-1) that are attributed to NO(2) complexed to NO(3)(-) and HNO(3), respectively. The electronic states of (HNO(3)).(N(2)O(4)) and (NO(3)(-)).(N(2)O(4)) were investigated using an excited state method and it was determined that both complexes possess one low-lying excited state that is accessible through absorption of visible radiation. Evidence for the existence of (NO(3)(-)).(N(2)O(4)) was obtained from UV/vis absorption spectra of N(2)O(4) in concentrated HNO(3), which show a band at 320 nm that is blue shifted by 20 nm relative to what is observed for N(2)O(4) dissolved in organic solvents. Finally, hydrogen transfer reactions within the (HNO(3)).(NO(2)) and (HNO(3)).(N(2)O(4)) complexes leading to the formation of HONO, were investigated. In both systems the calculated potential profiles rule out a thermal mechanism, but indicate the reaction could take place following the absorption of visible radiation. We propose that these complexes are potentially important in the thermal and photochemical production of HONO observed in previous laboratory and field studies.  相似文献   

18.
The position-specific 15N isotope content in organic molecules, at natural abundance, is for the first time determined by using a quantitative methodology based on 15N Nuclear Magnetic Resonance (NMR) spectrometry. 15N NMR spectra are obtained by using an adiabatic “Full-Spectrum” INEPT sequence in order to make possible 15N NMR experiments with a high signal-to-noise ratio (>500), to reach a precision with a standard deviation below 1‰ (0.1%). This level of precision is required for observing small changes in 15N content associated to 15N isotope effects. As an illustration, the measurement of an isotopic enrichment factor ε for each 15N isotopomer is presented for 1-methylimidazole induced during a separation process on a silica column. The precision expressed as the long-term repeatability of the methodology is good enough to evaluate small changes in the 15N isotope contents for a given isotopomer. As observed for 13C, inverse and normal 15N isotope effects occur concomitantly, giving access to new information on the origin of the 15N isotope effects, not detectable by other techniques such as isotope ratio measured by Mass Spectrometry for which bulk (average) values are obtained.  相似文献   

19.
A procedure was developed for the biosynthetic preparation of 15N-labelled guanosine and inosine through the action of a mutant Bacillus subtilis strain. Crude [N2,1,3,7,9-15N]guanosine and [1,3,7,9-15N]inosine were isolated from the culture filtrate by precipitation and anion-exchange chromatography (Scheme 1). No cell lysis and no enzymatic degradation was necessary. The per-isobutyrylated derivatives 1 and 2 were isolated from a complex mixture, purified by virtue of their different lipophilicity, and separated in three steps involving normal-and reversed-phase silica-gel chromatography. One litre of complex nutrient medium yielded 8.44 mmol of guanosine derivative and 2.84 mmol of inosine derivative with high average 15N enrichment (83.5 and 91.9 atom-%, resp.). [N6,1,3,7,9-15N]Adenosine ( 4 ) was obtained from 2′,3′,5′-tri-O-isobutyryl[1,3,7,9-15N]inosine ( 1 ) through the ammonolysis of its 1,2,4-triazolyl derivative with aqueous 15NH3 (Scheme 2).  相似文献   

20.
用抑制型离子色谱法定量测定了NO2-和NO3-.两种阴离子在最佳色谱条件下,8 m in内达到基线分离.对于NO2-,检出限为0.002 mg/L,相对标准偏差为2.58%,线性范围0.2 mg/L~20 mg/L,相关系数0.999 6.对于NO3-,检出限为0.011 mg/L,相对标准偏差为2.01%,线性范围0.3 mg/L~30 mg/L,相关系数0.999 2.该法用于蔬菜中NO2-和NO3-的测定,结果良好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号