首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rare earth (RE) metal-rich indides RE14Rh3-xIn3 (RE=Y, Dy, Ho, Er, Tm, Lu) can be synthesized from the elements by arc-melting or induction melting in tantalum crucibles. They were investigated by X-ray diffraction on powders and single crystals: Lu14Co3In3 type, space group P42/nmc, Z=4, a=961.7(1), c=2335.5(5) pm, wR2=0.052, 2047 F2 values, 62 variables for Y14Rh3In3, a=956.8(1), c=2322.5(5) pm, wR2=0.068, 1730 F2 values, 63 variables for Dy14Rh2.89(1)In3, a=952.4(1), c=2309.2(5) pm, wR2=0.041, 1706 F2 values, 63 variables for Ho14Rh2.85(1)In3, a=948.6(1), c=2302.8(5) pm, wR2=0.053, 1977 F2 values, 63 variables for Er14Rh2.86(1)In3, a=943.8(1), c=2291.5(5) pm, wR2=0.065, 1936 F2 values, 63 variables for Tm14Rh2.89(1)In3, and a=937.8(1), c=2276.5(5) pm, wR2=0.050, 1637 F2 values, 63 variables for Lu14Rh2.74(1)In3. Except Yb14Rh3In3, the 8g Rh1 sites show small defects. Striking structural motifs are rhodium-centered trigonal prisms formed by the RE atoms with comparatively short Rh-RE distances (271-284 pm in Y14Rh3In3). These prisms are condensed via common corners and edges building two-dimensional polyhedral units. Both crystallographically independent indium sites show distorted icosahedral coordination. The icosahedra around In2 are interpenetrating, leading to In2-In2 pairs (309 pm in Y14Rh3In3).  相似文献   

2.
The rare earth metal-copper-indides RECu6In6 (RE=Y, Ce, Pr, Nd, Gd, Tb, Dy) were synthesized from the elements by arc-melting. Well-crystallized samples were obtained by slowly cooling the melted buttons from 1320 to 670 K in sealed silica tubes in a muffle furnace. They were investigated by X-ray diffraction on powders and single crystals: ThMn12 type, space group I4/mmm, Z=2, a=916.3(2), c=535.8(2) pm, wR2=0.063, 216 F2 values, 15 variables for YCu6In6, a=926.5(4), c=543.5(3) pm, wR2=0.064, 314 F2 values, 15 variables for CeCu6In6, a=925.7(4), c=540.1(3) pm, wR2=0.075, 219 F2 values, 15 variables for PrCu6In6, a=923.1(4), c=540.3(3) pm, wR2=0.071, 218 F2 values, 15 variables for NdCu6In6, a=917.7(4), c=540.2(3) pm, wR2=0.076, 207 F2 values, 15 variables for GdCu6In6, a=917.0(5), c=540.5(4) pm, wR2=0.062, 215 F2 values, 15 variables for TbCu6In6, a=915.2(8), c=540.7(7) pm, wR2=0.108, 218 F2 values, 15 variables for DyCu6In6. The structures have been refined with a split position (50% Cu+50% In) for the 8j site. They can be explained by a tetragonal body-centered packing of CN 20 polyhedra (10Cu+10In) around the rare earth atoms. The ordering models of the copper and indium atoms and the limitations/resolution of X-ray diffraction for this topic are discussed.  相似文献   

3.
The new rare earth metal (RE)-nickel-indides Dy5Ni2In4 and RE4Ni11In20 (RE=Gd, Tb, Dy) were synthesized from the elements by arc-melting. Well-shaped single crystals were obtained by special annealing sequences. The four indides were investigated by X-ray diffraction on powders and single crystals: Lu5Ni2In4 type, Pbam, Z=2, a=1784.2(8), b=787.7(3), c=359.9(1) pm, wR2=0.0458, 891 F2 values, 36 variables for Dy5Ni2In4, U4Ni11Ga20 type, C2/m, a=2254.0(9), b=433.8(3), c=1658.5(8) pm, β=124.59(2)°, wR2=0.0794, 2154 F2 values, 108 variables for Gd4Ni11In20, a=2249.9(8), b=432.2(1), c=1657.9(5) pm, β=124.59(2)°, wR2=0.0417, 2147 F2 values, 108 variables for Tb4Ni11In20, and a=2252.2(5), b=430.6(1), c=1659.7(5) pm, β=124.58(2)°, wR2=0.0550, 2003 F2 values, 109 variables for Dy4Ni10.80In20.20. The 2d site in the dysprosium compound shows mixed Ni/In occupancy. Most nickel atoms in both series of compounds exhibit trigonal prismatic coordination by indium and rare earth atoms. Additionally, in the RE4Ni11In20 compounds one observes one-dimensional nickel clusters (259 pm Ni1-Ni6 in Dy4Ni10.80In20.20) that are embedded in an indium matrix. While only one short In1-In2 contact at 324 pm is observed in Dy5Ni2In4, the more indium-rich Dy4Ni10.80In20.20 structure exhibits a broader range in In-In interactions (291-364 pm). Together the nickel and indium atoms build up polyanionic networks, a two-dimensional one in Dy5Ni2In4 and a complex three-dimensional network in Dy4Ni10.80In20.20. These features have a clear consequence on the dysprosium coordination, i.e. a variety of short Dy-Dy contacts (338-379 pm) in Dy5Ni2In4, while the dysprosium atoms are well separated (430 pm shortest Dy-Dy distance) within the distorted hexagonal channels of the [Ni10.80In20.20] polyanion of Dy4Ni10.80In20.20. The crystal chemistry of both structure types is comparatively discussed.  相似文献   

4.
The rare earth-nickel-indides Tm2Ni1.896(4)In, Tm2.22(2)Ni1.81(1)In0.78(2), Tm4.83(3)Ni2In1.17(3), and Er5Ni2In were synthesized from the elements by arc-melting and subsequent annealing for the latter three compounds. Three indides were investigated by X-ray powder and single crystal diffraction: Mo2FeB2 type, P4/mbm, Z=2, a=731.08(4), c=358.80(3) pm, wR2=0.0201, 178 F2 values, 13 variables for Tm2Ni1.896(4)In, a=734.37(7), c=358.6(1) pm, wR2=0.0539, 262 F2 values, 14 variables for Tm2.22(2)Ni1.81(1)In0.78(2), and Mo5SiB2 type, I4/mcm, a=751.0(2), c=1317.1(3) pm, wR2=0.0751, 317 F2 values, 17 variables for Tm4.83(3)Ni2In1.17(3). X-ray powder data for Er5Ni2In revealed a=754.6(2) and c=1323.3(5) pm. The Mo2FeB2 type structures of Tm2Ni1.896(4)In and Tm2.22(2)Ni1.81(1)In0.78(2) are intergrowths of slightly distorted CsCl and AlB2 related slabs, however, with different crystal chemical features. The nickel sites within the AlB2 slabs are not fully occupied in both indides. Additionally In/Tm mixing is possible at the center of the CsCl slab, as is evident from the structure refinement of Tm2.22(2)Ni1.81(1)In0.78(2). The Mo5SiB2 type structures of Tm4.83(3)Ni2In1.17(3) and Er5Ni2In can be considered as an intergrowth of distorted CuAl2 and U3Si2 related slabs in an ABAB′ stacking sequence along the c-axis. Again, one thulium site shows Tm/In mixing. The U3Si2 related slab has great structural similarities with the Mo2FeB2 type structure of Tm2Ni1.896(4)In and Tm2.22(2)Ni1.81(1)In0.78(2). The crystal chemical peculiarities and chemical bonding in these intermetallics are briefly discussed.  相似文献   

5.
The RE3Ga9Ge compounds (RE=Y, Ce, Sm, Gd and Yb) were synthesized at 850°C in quantitative yield from reactions containing excess liquid Ga. The orthorhombic crystal structure is characterized by a unique three-dimensional open Ga framework with parallel straight tunnels. In the tunnels, inserted are arrays of the RE atoms together with interpenetrated monoatomic RE-Ga-Ge planes. A complex disordered arrangement of the RE and Ga atoms is observed in the monoatomic plane. Depending on the extent of disorder, the crystal structure could be presented either in a sub-cell (no ordering) or in a super-cell (partial ordering). Single-crystal X-ray data for Ce3Ga9Ge sub-structure: space group Immm, Z=2, cell parameters a=4.3400(12) Å; b=10.836(3) Å; and c=11.545(3) Å; super-structure: space group Cmma, Z=8, cell parameters a=8.680(3) Å; b=23.090(7) Å; and c=10.836(3) Å. The refinement based on the full-matrix least squares on Fo2[I>2σ(I)] converged to final residuals R1/wR2=0.0226/0.0528 and 0.0729/0.1569 for the sub- and super-structures, respectively. The relationship between the disordered sub-structure and partially ordered super-structure is discussed. Magnetic susceptibility measurements show Curie-Weiss behavior at the temperatures above 30 K with the negative Weiss constants Θ=−49(1) and−7.7 K for Gd and Ce analogs, respectively. An antiferromagnetic transition is observed in the Gd analog at TN=26.1 K. The μeff obtained for both analogs is close to the RE3+ free-ion value.  相似文献   

6.
The indides Ce7NixGexIn6 and Pr7NixGexIn6 were synthesized from the elements by arc-melting of the components. Single crystals were grown via special annealing sequences. Both structures were solved from X-ray single crystal diffraction data: new structure type, P6/m, Z=1, a=11.385(2), c=4.212(1) Å, wR2=0.0640, 634F2 values, 25 variables for Ce7Ni4.73Ge3.27In6 and a=11.355(6), c=4.183(2) Å, wR2=0.0539, 563F2 values, 25 variables for Pr7Ni4.96Ge3.04In6. Both indides show homogeneity ranges through Ni/Ge mixing (M sites). This new structure type can be derived from the AlB2 structure type by a substitution of the Al and B atoms by CeM12 and NiIn6Ce3 polyhedra (tricapped trigonal prism). Magnetic susceptibility measurements on a polycrystalline sample of Ce7Ni5Ge3In6 indicated Curie-Weiss like paramagnetic behavior down to 1.71 K with the effective magnetic moment slightly reduced in relation to the value expected for trivalent cerium ions. No magnetic ordering is evident.  相似文献   

7.
Application of high-pressure high-temperature conditions (3.5 GPa at 1673 K for 5 h) to mixtures of the elements (RE:B:S=1:3:6) yielded crystalline samples of the isotypic rare earth-thioborate-sulfides RE9[BS3]2[BS4]3S3, (RE=Dy-Lu), which crystallize in space group P63 (Z=2/3) and adopt the Ce6Al3.33S14 structure type. The crystal structures were refined from X-ray powder diffraction data by applying the Rietveld method. Dy: a=9.4044(2) Å, c=5.8855(3) Å; Ho: a=9.3703(1) Å, c=5.8826(1) Å; Er: a=9.3279(12) Å, c=5.8793(8) Å; Tm: a=9.2869(3) Å, c=5.8781(3) Å; Yb: a=9.2514(5) Å, c=5.8805(6) Å; Lu: a=9.2162(3) Å, c=5.8911(3) Å. The crystal structure is characterized by the presence of two isolated complex ions [BS3]3- and [BS4]5- as well as [□(S2-)3] units.  相似文献   

8.
The ternary intermetallic compounds RE2Cu2Cd (RE=Y, Sm, Gd-Tm, Lu) were synthesized by induction-melting of the elements in sealed tantalum tubes. The samples were characterized by X-ray powder diffraction. The structure of Gd2Cu2Cd was refined from single crystal X-ray diffractometer data: Mo2FeB2 type, space group P4/mbm, a=756.2(3), c=380.2(3) pm, wR2=0.0455, 321 F2 values, 12 variables. The structures are 1:1 intergrowth variants of slightly distorted CsCl and AlB2 related slabs of compositions RECd and RECu2. The copper and cadmium atoms build up two-dimensional [Cu2Cd] networks (257 pm Cu-Cu and 301 pm Cu-Cd in Gd2Cu2Cd) which are bonded to the rare earth atoms via short RE-Cu contacts (290 pm in Gd2Cu2Cd). Temperature dependent susceptibility measurements of RE2Cu2Cd with RE=Gd, Tb, Dy, and Tm show experimental magnetic moments which are close to the free RE3+ ion values. The four compounds show ferromagnetic ordering at TC=116.7(2), 86.2(3), 48.4(1), and 14.5(1) K, respectively, as confirmed by heat capacity measurements. Dy2Cu2Cd shows a spin reorientation at TN=16.9(1) K.  相似文献   

9.
The ternary copper indides RE2CuIn3RECu0.5In1.5 (RE=Ce, Pr, Nd, Sm and Gd) were synthesized from the elements in sealed tantalum tubes in an induction furnace. They crystallize with the CaIn2-type structure, space group P63/mmc, with a statistical occupancy of copper and indium on the tetrahedral substructure. These indides show homogeneity ranges RECuxIn2−x. Single crystal structure refinements were performed for five crystals: CeCu0.66In1.34 (a=479.90(7) pm, c=768.12(15) pm), PrCu0.52In1.48 (a=480.23(7) pm, c=759.23(15) pm), NdCu0.53In1.47 (a=477.51(7) pm, c=756.37(15) pm), SmCu0.46In1.54 (a=475.31(7) pm, c=744.77(15) pm), and GdCu0.33In1.67 (a=474.19(7), c=737.67(15) pm). Temperature-dependent susceptibility measurements show antiferromagnetic ordering at TN=4.7 K for Pr2CuIn3 and Nd2CuIn3 and 15 K for Sm2CuIn3. Fitting of the susceptibility data of the samarium compound revealed an energy gap ΔE=39.7(7) K between the ground and the first excited levels.  相似文献   

10.
The ternary indides RE10Ni9+xIn20 (RE = Tb, Dy) were synthesized from the elements by arc‐melting under argon and subsequent annealing. YbNiIn2 was prepared in a sealed tantalum tube in a water‐cooled sample chamber of a high‐frequency furnace. X‐ray powder and single crystal data revealed isotypism with the tetragonal Ho10Ni9In20 type structure, space group P4/nmm for the RE10Ni9+xIn20 compounds: a = 1337.0(2), c = 909.5(2) pm, wR2 = 0.0527, 1795 F2 values, 65 variables for RE = Tb, and a = 1333.63(7), c = 907.2(1) pm, wR2 = 0.0590, 1346 F2 values, 65 variables for RE = Dy. Both indides show an additional nickel site (Ni4) with partial nickel occupancy leading to the refined compositions Tb10Ni9.34(2)In20 and Dy10Ni9.32(2)In20. YbNiIn2 adopts the orthorhombic MgCuAl2‐type structure: Cmcm, a = 430.67(9), b = 1033.0(2), c = 758.1(1) pm, wR2 = 0.0262, 424 F2 values and 16 variable parameters. The crystal chemistry of the RE10Ni9+xIn20 and RENiIn2 compounds is briefly discussed.  相似文献   

11.
The RENiZn (RE = La, Tb), RE2Ni2Zn (RE = La, Ce, Tb) and La3Ni3Zn ternary compounds were synthesized by two methods: by heating in a resistance furnace evacuated quartz ampoules containing Al2O3‐crucibles with element pieces and by induction melting in sealed Ta crucibles with subsequent annealing at 400 °C. Scanning electron microscopy (SEM) coupled with energy dispersive X‐ray spectroscopy (EDXS) was used for examining microstructure and phase composition of some of the alloys. The crystal structures for all the investigated phases were solved or confirmed on single crystal data by applying the direct methods refined by a standard least square procedure: LaNiZn – str. type ZrNiAl, hexagonal, , hP9, a = 0.7285(1), c = 0.3938(1) nm, wR2 = 0.0534, 257 F2 values, 14 variables; a = 0.7044(1), c = 0.3782(1) nm, wR2 = 0.0447, 236 F2 values, 14 variables for TbNiZn; La2Ni2Zn – str. type Pr2Ni2Al, orthorhombic, Immm, oI10, a = 0.4381(1), b = 0.5459(1) c = 0.8605(2) nm, wR2 = 0.0824, 223 F2 values, 13 variables; a = 0.4365(1), b = 0.5430(1) c = 0.8279(2) nm, wR2 = 0.0635, 209 F2 values, 13 variables for Ce2Ni2Zn; a = 0.4209(1), b = 0.5366(1) c = 0.8165 (1) nm, wR2 = 0.0757, 200 F2 values, 13 variables for Tb2Ni2Zn; La3Ni3Zn – str. type Y3Co3Ga, orthorhombic, Cmcm, oS28, a = 0.4276(1), b = 1.0310(2) c = 1.3636(3) nm, wR2 = 0.0859, 579 F2 values, 26 variables. The structural peculiarities of these compounds and their relations are discussed.  相似文献   

12.
The crystal structures of two new ternary phases, La4Ag10Mg3 and La4Ag10.3Mg12, were refined from X-ray single crystal diffraction data. La4Ag10Mg3 crystallizes in the Ca4Au10In3 structure type, an ordered variant of the binary Zr7Ni10 compound: orthorhombic, Cmce, oS68, a=14.173(5), b=10.266(3), c=10.354(3) Å, Z=4, wR2=0.0826, 676 F2 values, 50 variables. La4Ag10.3Mg12 represents a new structure type: orthorhombic, Cmmm, oS116-10.32, a=9.6130(3), b=24.9663(8), c=9.6333(2) Å, Z=4, wR2=0.0403, 1185 F2 values, 101 variables. The structural analysis of both compounds, highlighting a significant contraction of the Ag-Mg distances, suggests the existence of three-dimensional [Ag-Mg] networks hosting La atoms. LMTO calculations applied to La4Ag10Mg3 indicate that the strongest bonds occur for Ag-Ag and Ag-Mg interactions, and confirm the presence of a 3D[Ag10Mg3]δ− polyanionic framework balanced by positively charged La atoms.  相似文献   

13.
Single crystals of the new borides Ni12AlB8, and Ni10.6Ga0.4B6 were synthesized from the elements and characterized by XRD and EDXS measurements. The crystal structures were refined on the basis of single crystal data. Ni12AlB8 (oC252, Cmce, a=10.527(2), b=14.527(2), c=14.554(2) Å, Z=12, 1350 reflections, 127 parameters, R1(F)=0.0284, wR2(F2)=0.0590) represents a new structure type with isolated B atoms and B5 fragments of a B-B zig-zag chain. Because the pseudotetragonal metric crystals are usually twinned. Ni10.6Ga0.4B6 (oP68, Pnma, a=12.305(2), b=2.9488(6), c=16.914(3) Å, Z=4, 1386 reflections, 86 parameters, R1(F)=0.0394, wR2(F2)=0.104) is closely related to binary Ni borides. The structure contains B-B zig-zag chains and isolated B atoms. Ni12GaB8 is isotypical to the Al-compound (a=10.569(4), b=14.527(4) and c=14.557(5) Å).  相似文献   

14.
EuPd0.72In1.28 and EuPt0.56In1.44 were prepared under multianvil high-pressure (10.5 GPa) high-temperature (1500 and 1400 K) conditions from the precursor compounds EuPdIn and EuPtIn. They were investigated by X-ray diffraction on both powders and single crystals: MgZn2-type, space group P63/mmc, a=578.7(1) pm, c=944.9(3) pm, wR2=0.0734, 263 F2 values for EuPd0.72In1.28 and a=591.1(2) pm, c=933.8(2) pm, wR2=0.0853, 151 F2 values for EuPt0.56In1.44 with 13 variable parameters per refinement. Both structures are built up from face- and corner-sharing tetrahedra of palladium (platinum) and indium atoms. The europium cations are located in cavities within the three-dimensional [Pd0.72In1.28] and [Pt0.56In1.44] networks. The 2a and 6 h positions of the tetrahedral networks show mixed Pd/In and Pt/In occupancy in EuPd0.72In1.28 and EuPt0.56In1.44, respectively. The crystal chemistry of these indides is briefly discussed.  相似文献   

15.
Well-shaped single crystals of YNiIn2 and Y4Ni11In20 were obtained by arc-melting of the elements and subsequent slow cooling. Both indides were investigated by X-ray diffraction on powders and single crystals: MgCuAl2 type, Cmcm, a=431.52(8), b=1042.0(2), c=730.0(1) pm, wR2=0.0471, 587 F2 values, 16 variables for YNiIn2 and U4Ni11Ga20 type, C2/m, a=2251.2(4), b=430.77(8), c=1658.5(3) pm, β=124.62(1)°, wR2=0.0542, 1583 F2 values, 108 variables for Y4Ni11In20. Both structures are built up from three-dimensional [NiIn2] and [Ni11In20] networks in which the yttrium atoms fill distorted pentagonal channels. The [NiIn2] network has only Ni–In and In–In contacts, while also Ni–Ni bonding plays an important role in the [Ni11In20] network.  相似文献   

16.
The rare earth-platinum-indides Nd6Pt13In22, Sm6Pt12.30In22.70, and Gd6Pt12.48In22.52 were synthesized from the elements by arc-melting of the components. Single crystals were grown using special annealing sequences. The three indides were investigated by X-ray powder and single crystal diffraction: Tb6Pt12In23 type, C2/m, Z=2, a=2811.9(6), b=441.60(9), , β=112.10(3)°, wR2=0.0629, 3645 F2 values, 126 variables for Nd6Pt13In22, a=2821.9(6), b=443.06(9), , β=112.39(3)°, wR2=0.0543, 3679 F2 values, 127 variables for Sm6Pt12.30In22.70, and a=2818.5(6), b=439.90(9), , β=112.29(3)°, wR2=0.0778, 3938 F2 values, 127 variables for Gd6Pt12.48In22.52. Most platinum atoms in these structures have a distorted trigonal prismatic coordination by rare earth metal and indium atoms. Together, the platinum and indium atoms build up a complex three-dimensional [Pt12+xIn23−x] polyanionic network in which the rare earth metal atoms fill distorted pentagonal and hexagonal channels. The 2c Wyckoff site in these structures plays a peculiar role. This site is occupied by indium in the prototype Tb6Pt12In23, while platinum atoms fill the 2c site in Nd6Pt13In22, leading to a linear Pt3 chain with Pt-Pt distances of 275 pm. The crystals with samarium and gadolinium as rare earth metal component show mixed Pt/In occupancies.  相似文献   

17.
A new family of quaternary carbon and nitrogen containing Rare Earth (RE: Sc, Y, Ho, Er, Tm and Lu) borides: REB15.5CN, has been synthesized and structurally characterized by powder X-ray diffraction data. They are all isotypic with Sc1−xB15.5CN whose structure was solved based on single-crystal X-ray data and HRTEM investigations. The structure refinement converged at a R(F2) value of 0.044 for 364 reflections. The new structure type of Sc1−xB15.5CN is composed of a three-dimensional network based on interconnected slabs of boron (B12)ico icosahedra and (B6)oct octahedra. A linear [CBC] chain and nitrogen tightly bridges icosahedra. Sc partially occupies voids in the sheets of boron octahedra. It crystallizes with the trigonal space group P3m1, with Z=2. Lattice parameters (nm) are as follows: for RE: Sc, a,b=0.5568(4), c=1.0756(2); Y, a,b=0.55919(6), c=1.0873(2); Ho, a,b=0.55883(7), c=1.0878(6); Er, a,b=0.55889(5), c=1.0880(6); Tm, a,b=0.5580(1), c=1.0850(6); Lu, a,b=0.55771(9), c=1.0839(4). Magnetic characterization of ErB17C1.3N0.6 has been performed.  相似文献   

18.
New indides SrAu3In3 and EuAu3In3 were synthesized by induction melting of the elements in sealed tantalum tubes. Both indides were characterized by X-ray diffraction on powders and single crystals. They crystallize with a new orthorhombic structure type: Pmmn, Z=2, a=455.26(9), b=775.9(2), c=904.9(2) pm, wR2=0.0425, 485 F2 values for SrAu3In3 and a=454.2(2), b=768.1(6), c=907.3(6) pm, wR2=0.0495, 551 F2 values for EuAu3In3 with 26 variables for each refinement. The gold and indium atoms build up three-dimensional [Au3In3] polyanionic networks, which leave distorted hexagonal channels for the strontium and europium atoms. Within the networks one observes Au2 atoms without Au-Au contacts and gold zig-zag chains (279 pm Au1-Au1 in EuAu3In3). The Au-In and In-In distances in EuAu3In3 range from 270 to 290 and from 305 to 355 pm. The europium atoms within the distorted hexagonal channels have coordination number 14 (8 Au+6 In). EuAu3In3 shows Curie-Weiss behavior above 50 K with an experimental magnetic moment of 8.1(1) μB/Eu atom. 151Eu Mössbauer spectra show a single signal at δ=−11.31(1) mm/s, compatible with divalent europium. No magnetic ordering was detected down to 3 K.  相似文献   

19.
Well crystallized samples of Dy2Pt7In16 and Tb6Pt12In23 were synthesized by an indium flux technique. Arc-melted precursor alloys with the starting compositions ∼DyPt3In6 and ∼TbPtIn4 were annealed with a slight excess of indium at 1200 K followed by slow cooling (5 K/h) to 870 K. Both indides were investigated by X-ray diffraction on powders and single crystals: Cmmm, a=1211.1(2), b=1997.8(3), c=439.50(6) pm, wR2=0.0518, 1138 F2 values, 45 variable parameters for Dy2Pt7In16 and C2/ma=2834.6(4), b=440.05(7), c=1477.1(3) pm, β=112.37(1)°, wR2=0.0753, 2543 F2 values, 126 variable parameters for Tb6Pt12In23. The platinum atoms in the terbium compound have a distorted trigonal prismatic coordination. In Dy2Pt7In16, trigonal and square prismatic coordination occur. The shortest interatomic distances are observed for Pt-In followed by In-In contacts. Considering these strong interactions, both structures can be described by complex three-dimensional [Pt7In16] and [Pt12In23] networks. The networks leave distorted pentagonal channels in Dy2Pt7In16, while pentagonal and hexagonal channels occur in Tb6Pt12In23. The crystal chemistry and chemical bonding of the two indides are briefly discussed.  相似文献   

20.
The ternary antimonide CeIrSb absorbs hydrogen under moderate temperature and pressure conditions (4 MPa and 573 K), leading to the hydride CeIrSbH0.8. The crystal structures of both compounds have been investigated by X-ray diffraction on powders and single crystals: TiNiSi type, space group Pnma, a=735.07(7), b=456.93(4), c=792.8(1) pm, R1/wR2=0.0206/0.0395, 601 F2 values for CeIrSb and a=728.16(14), b=460.35(6), c=825.87(2) pm, R1/wR2=0.0322/0.0735, 528 F2 values for CeIrSbH0.8 with 20 variables per refinement. Hydrogenation induces both an increase of the cell volume V (+4%) and a strongly anisotropic expansion of the unit cell with a maximum of 4.3% in the c direction, leading to a significant increase of the Ce-Ir and Ce-Ce distances in this direction. The H-insertion into CeIrSb leads to a magnetic transition from intermediate valence to antiferromagnetic behavior (TN=7.0 K) evidenced by magnetization, electrical resistivity and specific heat measurements. This transition can be explained on the basis of the Doniach diagram considering the Jcf interaction between the 4f(Ce) and conduction electrons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号