首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phase relations in the pseudo-binary system SrO-Fe2O3 have been investigated in air up to 1150°C by means of powder X-ray diffraction and thermal analysis. Sr3Fe2O7−δ, SrFeO3−δ and SrFe12O19 are stable phases in the entire investigated temperature region, whereas Sr2FeO4−δ and Sr4Fe3O10−δ decompose above 930±10°C and 850±25°C, respectively. Sr4Fe6O13±δ is entropy-stabilized relative to SrFeO3−δ and SrFe12O19 above 775±25°C. Extended solid-solution SrxFeO3−δ was demonstrated. On the Fe-deficient side, the extent of solid solubility appeared to decrease gradually with temperature, whereas an abrupt decrease due to formation of Sr4Fe6O13±δ was observed above 775°C on the Sr-deficient side.  相似文献   

2.
The two-phase region in the system 2(ZnSe)x(CuInSe2)1−x covers the chemical composition range 0.10<x?0.36, in which a tetragonal and a cubic phase are coexisting. The structural relation between both phases was determined by selected area diffraction (SAD) and transmission electron microscopy (TEM). Both crystal structures are very similar and the extremely small mismatch of the lattice constants of the tetragonal phase and the embedding cubic matrix phase allows for the grain boundaries to be virtually strain-free and, therefore, without notable dislocations. The tetragonal phase forms grains of flat discus-like shape in the ambient cubic matrix, with the short discus axis parallel to the tetragonal c-axis. TEM experiments proved that the discus-shaped tetragonal particles are collinear with the (100)cub, (010)cub and (001)cub planes of the cubic phase. Cooling and annealing experiments revealed a near-equilibrium state only to be realized for small cooling rates less than 2 K/h and/or for a long-time annealing with subsequent rapid quenching. Only then there will be no cation ordering in both, the tetragonal domains and the parental cubic matrix phase. If, however, the samples are kept in a state far away from the equilibrium condition both phases reveal Stannite-type cation ordering. Within the composition range of 0?x?0.10 only tetragonal 2(ZnSe)x(CuInSe2)1−x-alloys exist. At concentration rates above 36 mol% 2(ZnSe) only cubic structured solid solutions of ZnSe and CuInSe2 are found to be stable. However, in the range 36 mol% to about 60 mol% 2(ZnSe) tiny precipitates with Stannite-like structure exist, too.  相似文献   

3.
4.
Phase transitions in the elpasolite-type K3AlF6 complex fluoride were investigated using differential scanning calorimetry, electron diffraction and X-ray powder diffraction. Three phase transitions were identified with critical temperatures , and . The α-K3AlF6 phase is stable below T1 and crystallizes in a monoclinic unit cell with a=18.8588(2)Å, b=34.0278(2)Å, c=18.9231(1)Å, β=90.453(1)° (a=2accc, b=4bc, c=ac+2cc; ac, bc, cc—the basic lattice vectors of the face-centered cubic elpasolite structure) and space group I2/a or Ia. The intermediate β phase exists only in very narrow temperature interval between T1 and T2. The γ polymorph is stable in the T2<T<T3 temperature range and has an orthorhombic unit cell with a=36.1229(6)Å, b=17.1114(3)Å, c=12.0502(3)Å (a=3ac−3cc, b=2bc, c=ac+cc) at 250 °C and space group Fddd. Above T3 the cubic δ polymorph forms with ac=8.5786(4)Å at 400 °C and space group . The similarity between the K3AlF6 and K3MoO3F3 compounds is discussed.  相似文献   

5.
Subsolidus phase relations have been determined for the Bi2O3-Fe2O3-Nb2O5 system in air (900-1075 °C). Three new ternary phases were observed—Bi3Fe0.5Nb1.5O9 with an Aurivillius-type structure, and two phases with approximate stoichiometries Bi17Fe2Nb31O106 and Bi17Fe3Nb30O105 that appear to be structurally related to Bi8Nb18O57. The fourth ternary phase found in this system is pyrochlore (A2B2O6O′), which forms an extensive solid solution region at Bi-deficient stoichiometries (relative to Bi2FeNbO7) suggesting that ≈4-15% of the A-sites are occupied by Fe3+. X-ray powder diffraction data confirmed that all Bi-Fe-Nb-O pyrochlores form with positional displacements, as found for analogous pyrochlores with Zn, Mn, or Co instead of Fe. A structural refinement of the pyrochlore 0.4400:0.2700:0.2900 Bi2O3:Fe2O3:Nb2O5 using neutron powder diffraction data is reported with the A cations displaced (0.43 Å) to 96g sites and O′ displaced (0.29 Å) to 32e sites (Bi1.721Fe0.190(Fe0.866Nb1.134)O7, Fdm (#227), ). This displacive model is somewhat different from that reported for Bi1.5Zn0.92Nb1.5O6.92, which exhibits twice the concentration of small B-type cations on the A-sites as the Fe system. Bi-Fe-Nb-O pyrochlores exhibited overall paramagnetic behavior with large negative Curie-Weiss temperature intercepts, slight superparamagnetic effects, and depressed observed moments compared to high-spin, spin-only values. The single-phase pyrochlore with composition Bi1.657Fe1.092Nb1.150O7 exhibited low-temperature dielectric relaxation similar to that observed for Bi1.5Zn0.92Nb1.5O6.92; at 1 MHz and 200 K the relative permittivity was 125, and above 350 K conductive effects were observed.  相似文献   

6.
The high pressure behavior of aluminum tungstate [Al2(WO4)3] has been investigated up to ∼18 GPa with the help of Raman scattering studies. Our results confirm the recent observations of two reversible phase transitions below 3 GPa. In addition, we find that this compound undergoes two more phase transitions at ∼5.3 and ∼6 GPa before transforming irreversibly to an amorphous phase at ∼14 GPa.  相似文献   

7.
The high pressure behavior of U2O(PO4)2 has been investigated with the help of Raman scattering and X-ray diffraction measurements up to ∼14 and 6.5 GPa, respectively. The observed changes in the Raman spectra as well as the X-ray diffraction patterns suggest that U2O(PO4)2 undergoes a phase transition at ∼6 GPa to a mixture of a disordered ambient pressure phase and a new high pressure phase. The new phase resembles the triclinic mixed-valence phase of uranium orthophosphate (U(UO2)(PO4)2). On release of pressure the initial phase is not retrieved.  相似文献   

8.
A complete solid solution between relaxor ferroelectric Pb(Fe2/3W1/3)O3 (PFW) and ferroelectric PbTiO3 (PT), (1−x)PFW-xPT, was synthesized by a B-site precursor method and characterized by X-ray diffraction, differential scanning calorimetry, and dielectric measurements. A phase diagram between PFW and PT has been established. The diffuse phase transition temperature (Tmax≈180 K) of PFW was found to continuously increase with the increasing amount of Ti4+ ions on the B-site. At the same time, the relaxor ferroelectric behavior of PFW is gradually transformed toward a normal ferroelectric state, as evidenced by sharp and nondispersive peaks of dielectric permittivity around TC for x≥0.25. At room temperature, a transition from a cubic to a tetragonal phase takes place with x increased up to 0.25. A morphotropic phase boundary is located within the composition interval 0.25≤x≤0.35, which separates a pseudocubic (rhombohedral) phase from a tetragonal phase.  相似文献   

9.
Differential scanning calorimetry and high temperature oxide melt solution calorimetry are used to study enthalpy of phase transition and enthalpies of formation of Cu2P2O7 and Cu3(P2O6OH)2. α-Cu2P2O7 is reversibly transformed to β-Cu2P2O7 at 338–363 K with an enthalpy of phase transition of 0.15 ± 0.03 kJ mol−1. Enthalpies of formation from oxides of α-Cu2P2O7 and Cu3(P2O6OH)2 are −279.0 ± 1.4 kJ mol−1 and −538.8 ± 2.7 kJ mol−1, and their standard enthalpies of formation (enthalpy of formation from elements) are −2096.1 ± 4.3 kJ mol−1 and −4302.7 ± 6.7 kJ mol−1, respectively. The presence of hydrogen in diphosphate groups changes the geometry of Cu(II) and decreases acid–base interaction between oxide components in Cu3(P2O6OH)2, thus decreasing its thermodynamic stability.  相似文献   

10.
Different substitutions, i.e. Sr2+, Ba2+, K+, Nb5+ and V5+, have been performed in the triclinic α-La2W2O9 structure in order to stabilise the high temperature and better ionic conductor cubic β-phase. This approach has been used to try to obtain a new series of ionic conductors with LAMOX-type structure without molybdenum and presumably better redox stability compared to β-La2Mo2O9. Nanocrystalline materials obtained by a freeze-drying precursor method at 600 °C exhibit mainly the β-La2W2O9 structure, however, the triclinic α-form is stabilised as the firing temperature increases and the crystallite size grows. Only high levels of Ba2+ and V5+ substitutions retained the cubic form at room temperature after firing above 1100 °C. However, these phases are metastable above 700 °C, exhibiting an irreversible transformation to the low temperature triclinic α-phase. The synthesis, structure, phase stability, kinetic of phase transformation and electrical conductivity of these materials have been studied in the present report.  相似文献   

11.
Subsolidus phase equilibria and crystal chemistry were studied for the La2O3-MgO-TiO2 system and for the ternary sections LaMg1/2Ti1/2O3-CaTiO3-La2O3 and LaMg1/2Ti1/2O3-CaTiO3-La0.833Mg0.25Ti0.75O3 in the quaternary La2O3-CaO-MgO-TiO2 system. Dielectric properties (relative permittivity and temperature coefficient of resonant frequency, τf) were measured at 5-10 GHz and mapped onto the phase equilibria relations to reveal the compositions of temperature-stable (τf=0) compounds and mixtures. Phase equilibria relations were obtained by X-ray powder diffraction analysis of approximately 80 specimens prepared by solid-state reactions in air at ∼1450°C. Six ternary phases were found to form in the La2O3-MgO-TiO2 system, including the three previously reported compounds LaMg1/2Ti1/2O3, La5Mg0.5Ti3.5O15, and “La6MgTi4O18”; and the new phases La10MgTi9O34, La9Mg0.5Ti8.5O31, and a perovskite-type solid solution (1−x)LaMg1/2Ti1/2O3-xLa2/3TiO3 (0?x?0.5). The phase previously reported as “La6MgTi4O18” was found to form off-composition, apparently as a point compound, at La6Mg0.913Ti4.04O18. Indexed experimental X-ray powder diffraction patterns are given for LaMg1/2Ti1/2O3, La5Mg0.5Ti3.5O15, La6Mg0.913Ti4.04O18, La10MgTi9O34, and La9Mg0.5Ti8.5O31. LaMg1/2Ti1/2O3 exhibits a slightly distorted perovskite structure with ordered B-cations (P21/n; a=5.5608(2) Å, b=5.5749(3) Å, c=7.8610(5) Å, β=90.034(4)°). La5Mg0.5Ti3.5O15 (Pm1; a=5.5639(1), c=10.9928(5) Å) and La6Mg0.913Ti4.04O18 (R3m; a=5.5665(1), c=39.7354(9) Å) are n=5 and n=6 members, respectively, of the (111) perovskite-slab series AnBn−1O3n. The new phases La10MgTi9O34 (a=5.5411(2), b=31.3039(9), c=3.9167(1) Å) and La9Mg0.5Ti8.5O31 (a=5.5431(2), b=57.055(1), c=3.9123(1) Å) are n=5 and n=4.5 members, respectively, of the (110) perovskite-slab series AnBnO3n+2, which exhibit orthorhombic subcells; electron diffraction revealed monoclinic superlattices with doubled c-parameters for both compounds. Extensive perovskite-type solid solutions form in the ternary sections LaMg1/2Ti1/2O3-CaTiO3-La2O3 and LaMg1/2Ti1/2O3-CaTiO3-La0.833Mg0.25Ti0.75O3. The La2O3-MgO-TiO2 system contains two regions of temperature-stable (τf=0) compositions. The quaternary La2O3-CaO-MgO-TiO2 system contains an extensive single-phase perovskite-type volume through which passes a surface of temperature-stable compositions with permittivities projected to be in the 40-50 range. Traces of this surface occur as lines of τf=0 perovskite-type phases in the ternary sections LaMg1/2Ti1/2O3-CaTiO3-La2O3 and LaMg1/2Ti1/2O3-CaTiO3-La0.833Mg0.25Ti0.75O3.  相似文献   

12.
A new ZnTe modified TiO2 nanotube (NT) array catalyst was prepared by pulse potential electrodeposition of ZnTe nanoparticles (NPs) onto TiO2 NT arrays, and its application for photocatalytic degradation of anthracene-9-carboxylic acid (9-AnCOOH) was investigated. The even distribution of ZnTe NPs was well-proportionately grown on the top surface of the TiO2 NT while without clogging the tube entrances. Compared with the unmodified TiO2 NT, the ZnTe modified TiO2 NT (ZnTe/TiO2 NT) showed significantly enhanced photocatalytic activity towards 9-AnCOOH under simulated solar light. After 70 min of irradiation, 9-AnCOOH was degraded with the removal ratio of 45% on the bare TiO2 NT, much lower than 80%, 90%, and 100% on the ZnTe/TiO2 NT with the ZnTe NPs prepared under the pulsed “on” potentials of −0.8, −1.0, and −2.0 V, respectively. The increased photodegradation efficiency mainly results from the improved photocurrent density as results of enhanced visible-light absorption and decreased hole-electron recombination due to the presence of narrow-band-gap p-type semiconductor ZnTe.  相似文献   

13.
用液相反应-前驱物烧结法制备了Cr2(WO4)3和Cr2(MoO4)3粉体。298~1 073 K的原位粉末X射线衍射数据表明Cr2(WO4)3和Cr2(MoO4)3的晶胞体积随温度的升高而增大, 本征线热膨胀系数分别为(1.274±0.003)×10-6 K-1和(1.612±0.003)×10-6 K-1。用热膨胀仪研究了Cr2(WO4)3和Cr2(MoO4)3在静态空气中298~1 073 K范围内热膨胀行为,即开始表现为正热膨胀,随后在相转变点达到最大值,最后表现为负热膨胀,其负热膨胀系数分别为(-7.033±0.014)×10-6 K-1和(-9.282±0.019)×10-6 K-1。  相似文献   

14.
聚合物-溶剂-超临界CO2三元体系的相行为   总被引:2,自引:0,他引:2  
研究了聚合物-超临界二氧化碳二元体系溶解性,并考查了添加共溶剂对溶解性的影响,结果表明,添加共溶剂会大大提高CO2的溶解度.此外,还研究了聚合物-溶剂-超临界二氧化碳三元体系在高压时的相行为, 探讨了组分性质、含量等对温度-压力相图的影响.随着CO2含量的增加,压力-温度相图L-LV(单一液相向液气两相共存)边界线的斜率会出现突变点,发生由L-LV边界线向L-LL(单一液相向液液两相共存)边界线的过渡, 而L-LV边界线对不同聚合物并不敏感.  相似文献   

15.
The structural evolution of nanocrystalline TiO2 milled in different milling atmospheres was studied by X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy. Rietveld refinements of the XRD data showed that high-energy ball milling induced the transformations from anatase to srilankite and rutile at room temperature and ambient pressure. The milling atmospheres with different oxygen partial pressures had an influence on the transformation kinetics of anatase. When the nanocrystalline TiO2 powders were, respectively, milled in oxygen, air and nitrogen atmospheres, the transformation rates of anatases in turn increased with a decrease in oxygen partial pressure of the milling atmosphere, due to the reducing concentration of oxygen vacancies in the milled TiO2 lattice.  相似文献   

16.
用HF自洽场理论和密度泛函理论(DFT)的B3LYP方法,在6 31G水平上研究了低聚物(Cl2AlNH2)n和(H2AlNH2)n(n=1~5)簇的几何构型、电子结构和聚合反应热力学性质,比较了两个系列化合物中化学键的强度.结果表明,Cl2AlNH2和H2AlNH2分子为C2 (EC)平面型结构,其中Al-N为由一个σ键和一个键组成的双键.(Cl2AlNH2)n和(H2AlNH2)n(n=1~5)分子为Dnh对称,Al-N是典型的σ单键 .低聚物(Cl2AlNH2)n和(H2AlNH2)n的稳定性顺序分别为: 3 > 2 > 4> 5 > 1和8 > 7 > 9 > 11 > 6.  相似文献   

17.
Phase equilibria, crystal structure, and transport properties in the (100−x) La0.95Ni0.6Fe0.4O3-xCeO2 (LNFCx) system (x=2-75 mol%) were studied in air. Evolution of phase compositions and crystal structure of components was observed. The LNFCx (2≤x≤10) are three-phase and comprise the perovskite phase with rhombohedral symmetry (R3?c), the modified ceria with fluorite structure (Fm3?m), and NiO as a secondary phase. These multiphase compositions exhibit metallic-like conductivity above 300 °C. Their conductivity gradually decreases from 395.6 to 260.6 S/cm, whereas the activation energy remains the same (Ea=0.04-0.05 eV), implying the decrease in the concentration of charge carriers. Phase compositions in the LNFCx (25≤x≤75) are more complicated. A change from semiconducting to metallic-like conductivity behavior was observed in LNFC25 at about 550 °C. The conductivity of LNFCx (25≤x≤75) could be explained in terms of a modified simple mixture model.  相似文献   

18.
Raman and FTIR spectra of guanidinium zinc sulphate [C(NH2)3]2Zn(SO4)2 are recorded and the spectral bands assignment is carried out in terms of the fundamental modes of vibration of the guanidinium cations and sulphate anions. The analysis of the spectrum reveals distorted SO42− tetrahedra with distinct S–O bonds. The distortion of the sulphate tetrahedra is attributed to Zn–O–S–O–Zn bridging in the structure as well as hydrogen bonding. The CN3 group is planar which is expressed in the twofold symmetry along the C–N (1) vector. Spectral studies also reveal the presence of hydrogen bonds in the sample. The vibrational frequencies of [C(NH2)3]2 and HC(NH2)3 are computed using Gaussian 03 with HF/6-31G* as basis set.  相似文献   

19.
Phase equilibria studies of the CaO:TiO2:Nb2O5 system confirmed the formation of six ternary phases: pyrochlore (A2B2O6O′), and five members of the (110) perovskite-slab series Can(Ti,Nb)nO3n+2, with n=4.5, 5, 6, 7, and 8. Relations in the quasibinary Ca2Nb2O7−CaTiO3 system, which contains the Can(Ti,Nb)nO3n+2 phases, were determined in detail. CaTiO3 forms solid solutions with Ca2Nb2O7 as well as CaNb2O6, resulting in a triangular single-phase perovskite region with corners CaTiO3-70Ca2Ti2O6:30Ca2Nb2O7-80CaTiO3:20CaNb2O6. A pyrochlore solid solution forms approximately along a line from 42.7:42.7:14.6 to 42.2:40.8:17.0 CaO:TiO2:Nb2O5, suggesting formulas ranging from Ca1.48Ti1.48Nb1.02O7 to Ca1.41Ti1.37Nb1.14O7 (assuming filled oxygen sites), respectively. Several compositions in the CaO:TiO2:Ta2O5 system were equilibrated to check its similarity to the niobia system in the pyrochlore region, which was confirmed. Structural refinements of the pyrochlores Ca1.46Ti1.38Nb1.11O7 and Ca1.51Ti1.32V0.04Ta1.10O7 using single-crystal X-ray diffraction data are reported (Fd3m (#227), a=10.2301(2) Å (Nb), a=10.2383(2) Å (Ta)), with Ti mixing on the A-type Ca sites as well as the octahedral B-type sites. Identical displacive disorder was found for the niobate and tantalate pyrochlores: Ca occupies the ideal 16d position, but Ti is displaced 0.7 Å to partially occupy a ring of six 96g sites, thereby reducing its coordination number from eight to five (distorted trigonal bipyramidal). The O′ oxygens in both pyrochlores were displaced 0.48 Å from the ideal 8b position to a tetrahedral cluster of 32e sites. The refinement results also suggested that some of the Ti in the A-type positions may occupy distorted tetrahedra, as observed in some zirconolite-type phases. The Ca-Ti-(Nb,Ta)-O pyrochlores both exhibited dielectric relaxation similar to that observed for some Bi-containing pyrochlores, which also exhibit displacively disordered crystal structures. Observation of dielectric relaxation in the Ca-Ti-(Nb,Ta)-O pyrochlores suggests that it arises from the displacive disorder and not from the presence of polarizable lone-pair cations such as Bi3+.  相似文献   

20.
PdCl2(PPh3)2 reacted with NaOAr (Ar = Ph, p-tolyl) at 0 °C to afford PdCl(Ph)(PPh3)2, instead of PdCl(OAr)(PPh3)2, in 12-16% isolated yields based on Pd. The structure was confirmed by NMR and X-ray crystallography. GC-MS analysis of the reaction solution revealed that OPPh2(OAr), OPPh(OAr)2, and OP(OAr)3 are formed, while NMR studies indicated that PdCl(Ph)(PPh3)2 is produced when PdCl(OAr)(PPh3)2 decomposes. The reaction of PdCl2(PPh3)2 with Bu3Sn(OC6H4-p-OMe) also gave PdCl(Ph)(PPh3)2 in 8% isolated yield. These results suggest that PdCl(OAr)(PPh3)2 is highly labile and the aryloxy ligand exchanges with the phenyl groups in triphenylphosphine even under very mild conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号