首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A previously proposed first order non-linear differential equation for uniaxial viscoplasticity, which is non-linear in stress and strain but linear in stress and strain rates, is transformed into an equivalent integral equation. The proposed equation employs total strain only and is symmetric with respect to the origin and applies for tension and compression. The limiting behavior for large strains and large times for monotonic, creep and relaxation loading is investigated and appropriate limits are obtained. When the equation is specialized to an overstress model it is qualitatively shown to reproduce key features of viscoplastic behavior. These include: initial linear elastic or linear viscoelastic response: immediate elastic slope for a large instantaneous change in strain rate normal strain rate sensitivity and non-linear spacing of the stress-strain curves obtained at various strain rates; and primary and secondary creep and relaxation such that the creep (relaxation) curves do not cross. Isochronous creep curves are also considered. Other specializations yield wavy stress-strain curves and inverse strain rate sensitivity. For cyclic loading the model must be modified to account for history dependence in the sense of plasticity.  相似文献   

2.
A novel cyclic deformation test program was undertaken to characterize macroscopic time dependent deformation of a titanium alloy for use in viscoplastic model development. All tests were conducted at a high homologous temperature, 650 °C, where there are large time dependent and loading rate dependent effects. Uninterrupted constant amplitude tests having zero mean stress or a tensile mean stress were conducted using three different control modes: strain amplitude and strain rate, stress amplitude and stress rate, and a hybrid stress amplitude and strain rate. Strain ratcheting occurred for all cyclic tests having a tensile mean stress and no plastic shakedown was observed. The shape of the strain ratcheting curve as a function of time is analogous to a creep curve having primary, steady state and tertiary regions, but the magnitude of the ratchet strains are higher than creep strains would be for a constant stress equal to the mean stress. Strain cycles interrupted with up to eight 2-h stress relaxation periods around the hysteresis loop, including hold times in each quadrant of the stress–strain diagram, were also conducted. Stress relaxation was path-dependent and in some cases the stress relaxed to zero. The cyclic behavior of these interrupted tests was similar even though each cycle was very complex. These results support constitutive model development by providing exploratory, characterization and validation data.  相似文献   

3.
Investigating the dilatancy, acoustic emission and failure characteristics of fissured rock are significant to ensure their geotechnical stability. In this paper, the uniaxial and triaxial compression experiments with AE monitoring under different loading rates were carried out on fissured rock specimens with the same geometrical distribution of two pre-existing flaws. The dilatancy and AE activity of these specimens were discussed, and the effects of the confining pressure and loading rate on the mechanical parameters and failure characteristics were analyzed. The results show that the exponential strength criterion is more suitable than the Mohr–Coulomb strength criterion to characterize the strength characteristics of fissured rock. The crack evolution and failure characteristics of fissured rock specimens are more complicated than those of intact rock specimens. The failure characteristics of the fissured rock follow the tensile shear coalescence model, crack branching occurs with increasing the loading rate, and the multi-section coalescence model is verified with increasing the confining pressure. The phenomena of stress drop and yield platform usually occur after the dilatancy onset, the specimen does not fail instantaneously, and the propagation and coalescence of cracks cause a sharp increase in the AE signals, circumferential strain, and volumetric strain.  相似文献   

4.
The deformation behavior of two unfilled engineering thermoplastics, ultra high molecular weight polyethylene (UHMWPE) and polycarbonate (PC), has been investigated in creep test conditions. It has been found that a loading history (prior to the creep test) comprising of loading to a maximum stress or strain value followed by partial unloading to arrive at the target stress value can greatly modify the strain-time behavior. Under such a test protocol, while the expected increase in strain during creep (constant tensile load) is observed, at relatively low creep stresses specimens have also demonstrated a monotonic decrease in strain. In an intermediate stress range, specimens have demonstrated time dependent behavior comprising of a transition from decreasing to increasing strain during creep in tension. This paper presents experimental results to delineate these findings and explore the effect of prior strain rate on the qualitative and quantitative changes in the output (strain-time) behavior. Furthermore, modification of the viscoplasticity theory based on overstress (VBO) model into a double element configuration is introduced. These changes confer upon the model the ability to yield non-monotonic behavior in creep, and supporting simulation results have been included. These changes, therefore, allow the model to simulate strain rate sensitivity, creep, relaxation, and recovery behavior, but more importantly address the issue of non-monotonic changes in creep and relaxation when a loading history involves some degree of unloading.  相似文献   

5.
We study the nonlinear stress-strain constitutive relation proposed earlier for describing one-dimensional isothermal rheological processes in the case of monotonous variation of the strain (in particular, viscoplasticity, creep, relaxation, plasticity, and superplasticity). This relation contains integral time operators of the strain and strain rate, which are the norms in the Lebesgue and Sobolev spaces equipped with special weight factors, one material function, and nine material parameters determined by the results of tests of the material for relaxation, creep, long-term strength, and constant-rate strain.We analytically inverse the constitutive relation and study the properties of the inverse operator. We derive the equation of creep curves corresponding to an arbitrary law of loading at the stage of passing from the zero stress to a given constant level. We study their dependence on the material parameters and the loading stage characteristics and find restrictions on the material parameters which ensure that the asymptotic behavior of the creep curves for large times is independent of the length of the loading stage and the specific law of stress variation during this stage, i.e., we find the conditions of the model memory decay in creep. Thus we have proved that the constitutive relation proposed above can adequately model both creep and the effect of the material memory decay.  相似文献   

6.
A coordinated modeling and experimental effort to investigate the shear stress-shear strain rate response of ballistic gelatin is presented. A power-law constitutive model that captures non-Newtonian shear-thickening behavior, the evolution of viscosity, and the momentum diffusion at high shear rates is adopted. A simple asymptotic relationship between the maximum wall shear stress and the maximum striking wall velocity is derived in the high diffusion rate regime for a shear flow between two parallel plates. Experimental investigation is conducted on double lap-shear test fixture with gelatin specimens of different thicknesses subjected to high strain rate input on the inner surface, generated by a polymer split Hopkinson pressure bar. This test fixture allows measurement of transmitted shear stress as well as visualization of momentum diffusion through gelatin when imaged by a high speed camera. Gelatin specimens of various thicknesses were used for extracting the power-law model parameters. It is found that ballistic gelatin behaves as a shear-thickening fluid at high shear rates with a power-law exponent of 2.22.  相似文献   

7.
The main failure mechanisms of flexible pavements, such as low-temperature cracking, fatigue failure, and rutting are strongly influenced by the viscoelastic properties of asphalt. These viscoelastic properties originate from the thermorheological behavior of bitumen, the binder material of asphalt. In this paper, the bitumen behavior is studied by means of a comprehensive experimental program, allowing the identification of viscoelastic parameters of a power-law type creep model, indicating two time scales (short-term and long-term) within the creep deformation history of bitumen. Moreover, these characteristics of the creep deformation transfer towards bitumen-inclusion mixtures, as illustrated for mastic, consisting of bitumen and filler. For this purpose, the aforementioned power-law creep model is implemented into a micromechanical framework. Finally, the activation of the different creep mechanisms as a function of the loading rate is discussed, using viscoelastic properties obtained from both static and cyclic creep tests.  相似文献   

8.
Experimental tensile tests were performed on polyamide-based (PA66) woven strap samples. A strain measuring device was used to measure the strain in the middle and effective part of the woven tensile sample. The tests were performed, on the one hand under monotonous tension at different strain rates and on the other hand under sophisticated cyclic loading histories, including relaxation and creep sequences. The analysis of experimental results was made through a visco-elasto-hysteresis model, based on the superimposition of three stress components. The proposed method allows for characterizing the steady state viscous stress as a function of strain and strain rate, the time-independent irreversible behaviour and the instantaneous modulus increasing with the strain. Based on the visco-elasto-hysteresis model, an analysis enabled us to understand and predict the change in relaxation and creep orientations during complex loading histories.  相似文献   

9.
Observations are reported on a polymer composite (polyamide-6 reinforced with short glass fibers) in tensile relaxation tests with various strains, tensile creep tests with various stresses, and cyclic tests with a stress-controlled program (ratcheting with a fixed maximum stress and various minimum stresses). Constitutive equations are developed in cyclic viscoelastoplasticity of polymer composites. Adjustable parameters in the stress–strain relations are found by fitting observations in relaxation tests and cyclic tests (16 cycles of loading–unloading). It is demonstrated that the model correctly predicts experimental data in creep tests and dependencies of maximum and minimum strains per cycle on number of cycles up to fatigue fracture of specimens. The influence of strain rate and minimum stress on number of cycles to failure is studied numerically.  相似文献   

10.
声发射测试技术由于实时、连续、在线监测的特点,被越来越多地应用于材料性能的研究,但由于蠕变实验温度过高,超过传感器使用温度限制,因此在金属材料蠕变损伤领域还尚属空白。本文以Q345R钢为例,设计蠕变声发射监测专用的夹具导波机构,进行Q345R钢蠕变声发射监测实验。监测结果表明,蠕变损伤过程的声发射活动表现出与蠕变曲线相类似的阶段性特征。蠕变初期撞击数较多,声发射较为活跃;随着损伤的演进,试件进入稳态蠕变阶段,声发射活动渐趋平稳,日平均撞击数趋于稳定值;蠕变后期,能量快速释放,声发射活动加剧,试件发生蠕变断裂。  相似文献   

11.
In this paper, the simplified method, proposed in (Combescure, 1998), for the prediction of creep buckling is compared to experimental results. The model is applied to predict the buckling time of two sets of experiments on cylinders subjected to uniform external pressure. It is shown that the proposed model is satisfactory for this type of prediction: in all cases, the times up to failure predicted by the model are generally lower than the experimental failure times. The model is rather conservative for thicker cylinders. However, it appears that a very detailed geometrical imperfection survey would be necessary if a highly accurate assessement of the creep failure time were sought. It has been observed experimentally that creep buckling is a very dangerous failure mode: nothing seems to happen during a very long “incubation” period but, when the initial imperfection reaches some critical value, buckling then suddenly occurs. For thin cylinders, the level of creep strain at which the instability starts to develop is much lower than the strain at which the tertiary creep initiates; the instability is thus clearly generated from the interaction between the material and the geometrical nonlinearity.  相似文献   

12.
Following previous work (Krempl, 1979), a servocontrolled testing machine and strain measurement at the gage length were used to study the uniaxial rate(time)-dependent behavior of AISI Type 304 stainless steel at room temperature. The test results show that the creep strain accumulated in a given period of time depends strongly on the stress-rate preceding the creep test. In constant stress-rate zero-to-tension loading the creep strain accumulated in a fixed time-period at a given stress level is always higher during loading than during unloading. Continued cycling causes an exhaustion of creep ratchetting which depends on the stress-rate. Periods of creep and relaxation introduced during completely reversed plastic cycling show that the curved portions of the hysteresis loop exhibit most of the inelasticity. In the straight portions, creep and relaxation are small and there exists a region commencing after unloading where the behavior is similar to that at the origin for virgin materials. This region does not extend to zero stress.The results are at variance with creep theory and with viscoplasticity theories which assume that the yield surface expands with the stress. They support the theory of viscoplasticity based on total strain and overstress.  相似文献   

13.
对某矿深部灰岩进行单轴压缩试验,测得试件破坏全过程的应力、应变和声发射参数。通过分析应力、应变和声发射参数之间的关系,可根据声发射振铃计数率的变化情况,将全过程分为三个阶段:第一阶段处于孔隙裂隙压密阶段,振铃计数率较多;第二阶段处于稳定变形阶段,声发射处于平静期;第三阶段岩石进入塑性变形阶段,振铃计数率明显增加。研究发现,深度越深,第一阶段终止时的应力水平越高;将声发射累计能率与累计振铃计数率的比值定义为能振比λ,λ的变化规律一定程度上反映出试件内部裂隙发展情况。研究λ的变化规律能够为识别岩体失稳提供依据,提高声发射技术监测预报的准确性。  相似文献   

14.
For the Charpy V-notch test the influence of strain rate on competing failure mechanisms is analyzed numerically. The nucleation and growth of micro-voids is represented in terms of an elastic-viscoplastic constitutive model, which describes the mechanism of ductile fracture by void coalescence. Failure by cleavage is assumed to occur if the maximum principal tensile stress exceeds a certain critical value. Attention is focused on the temperature regime where the transition in fracture mode between cleavage and ductile rupture takes place. In the analyses the temperature is taken as constant and the effect of inertia is neglected, so that time dependence enters only through the material strain rate sensitivity. The material model is found to reproduce the experimentally observed change in failure mode from predominantly ductile fracture at low strain rates, to cleavage fracture at high strain rates. The numerical results show that in the transition regime, the porosity in the notch tip region plays a role in the fracture process even when failure occurs by cleavage. Once the transition of failure mode from cleavage to ductile rupture has occurred, the energy absorbed at low rates is greater than that absorbed at high rates.  相似文献   

15.
Rotating discs are the vital part of many types of machineries. Usually there is a tendency to make use of them in higher rotational speeds, but ahead of their complete break down the incidence of vibration, plastic failure or creep relaxation can create serious damages which finally prevent the increase of the rotational speed. The invention of new materials has provided new opportunities to increase the loading capacity and speed of the discs. Functionally graded materials(FGMs) are a kind of new materials utilized in the construction of rotating discs. Consequently an important aspect in the analyses of heterogeneous FGM discs is the study of their creep relaxation. One of the well known constitutive equations for the modeling of creep phenomenon is known as the Sherby's law. Based on the steady state creep, the behavior of a variety of FGM rotating discs are studied. The analysis considers the conditions in which the distribution of volume fraction follows a power-law pattern. The required mathematical model and its solution for the analysis of stress and creep strain rate is represented. Some case studies are considered in which the effects of nonlinearly distributed volume fractions are studied. In the case studies, the analysis of rotating FGM discs made of Aluminum-Silicon Carbide compounds is considered. Besides, the analyses of discs with outside tractions are considered and the effects of typical material compositions upon the creep deformations are studied. For instance, the investigation discloses the significance of the use of FGM hubs in the turbine constructions.  相似文献   

16.
周孙基  程磊  王立伟  王鼎  郝圣旺 《力学学报》2019,51(5):1372-1380
响应量在临近破坏时呈现出临界幂律奇异性加速特征,是一种被广泛证实的灾变破坏前兆,并被火山、滑坡和岩石破坏实验等后验预测结果证实为一种对破坏时间进行短临期预测的可行方法.但是,奇异性指数测量值的较大分散性导致了对其具体取值的争议和预测效果的不确定性.因此,理解奇异性指数取值特征及其内在物理控制因素,成为了一个核心问题.本文基于连续介质损伤力学和材料时间相关失效特征,构建了刻画损伤加速发展通向破坏过程的力学模型.导出了恒名义应力蠕变加载和控制名义应力随时间线性增大两种典型加载方式下,损伤和应变率加速发展通向破坏的临界幂律奇异性前兆特征.阐明了临界幂律奇异性指数取值依赖于材料损伤与承受真应力之间的非线性关系这一内在物理根源,表明了实际测量中奇异性指数的分散性不完全归结于测量数据误差,而是有着内在物理控制因素.针对破坏前奇异性指数的不确定性,建议了在未知奇异性指数条件下预测破坏时间的方法,并基于花岗岩脆性蠕变破坏实验进行了验证和说明.   相似文献   

17.
18.
This article reports the acoustic emission (AE) study of precursory micro-cracking activity and fracture behaviour of quasi-brittle materials such as concrete and cement mortar. In the present study, notched three-point bend specimens (TPB) were tested under crack mouth opening displacement (CMOD) control at a rate of 0.0004 mm/sec and the accompanying AE were recorded using a 8 channel AE monitoring system. The various AE statistical parameters including AE event rate $ \left( {\frac{dn }{dt }} \right) $ , AE energy release rate $ \left( {\frac{dE }{dt }} \right) $ , amplitude distribution for computing the AE based b-value, cumulative energy (ΣE) and ring down count (RDC) were used for the analysis. The results show that the micro-cracks initiated and grew at an early stage in mortar in the pre peak regime. While in the case of concrete, the micro-crack growth occurred during the peak load regime. However, both concrete and mortar showed three distinct stages of micro-cracking activity, namely initiation, stable growth and nucleation prior to the final failure. The AE statistical behavior of each individual stage is dependent on the number and size distribution of micro-cracks. The results obtained in the laboratory are useful to understand the various stages of micro-cracking activity during the fracture process in quasi-brittle materials such as concrete & mortar and extend them for field applications.  相似文献   

19.
为研究闪长岩在单轴加载过程中的声发射和各向波速变化规律,在单轴阶段加载和循环阶段加载条件下,对闪长岩岩样破裂过程中的声发射累计数、不同应力水平不同方向的波速、切线模量、轴向应变速率进行了研究。实验结果表明:(1)随着应力水平的增高,声发射事件数不断增加,在高应力水平(约80%峰值强度)时,声发射累计数急剧增多,随后切线模量出现震荡变化。(2)在加载过程中,压密程度及裂纹扩展方向对波速产生了巨大的影响,导致不同方向波速在不同的应力水平呈现出不同的变化规律,由此可以推测破裂面位置和破裂模式。在较高应力水平下(约60%峰值强度),平行于加载方向的波速趋于稳定,而垂直于加载方向的波速则持续下降,故用垂直于加载方向传播的波速预测岩石的破坏更具可靠性。(3)随着应力的增加,应变速率有逐渐减小的趋势,但临近岩石破裂时无异常变化出现,说明利用变形观测难以预测此类岩石的破坏。以上研究表明,根据纵波波速、声发射累计数和切线模量的变化可以有效预测岩石的破坏。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号