首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structures of the two new synthetic compounds Co2TeO3Cl2 and Co2TeO3Br2 are described together with their magnetic properties. Co2TeO3Cl2 crystallize in the monoclinic space group P21/m with unit cell parameters a=5.0472(6) Å, b=6.6325(9) Å, c=8.3452(10) Å, β=105.43(1)°, Z=2. Co2TeO3Br2 crystallize in the orthorhombic space group Pccn with unit cell parameters a=10.5180(7) Å, b=15.8629(9) Å, c=7.7732(5) Å, Z=8. The crystal structures were solved from single crystal data, R=0.0328 and 0.0412, respectively. Both compounds are layered with only weak interactions in between the layers. The compound Co2TeO3Cl2 has [CoO4Cl2] and [CoO3Cl3] octahedra while Co2TeO3Br2 has [CoO2Br2] tetrahedra and [CoO4Br2] octahedra. The Te(IV) atoms are tetrahedrally [TeO3E] coordinated in both compounds taking the 5s2 lone electron pair E into account. The magnetic properties of the compounds are characterized predominantly by long-range antiferromagnetic ordering below 30 K.  相似文献   

2.
立方晶型Sb2O3纳米晶的合成及光催化性能   总被引:1,自引:0,他引:1  
采用沉淀法合成了立方晶型Sb2O3纳米晶,通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、紫外-可见漫反射光谱(UV-Vis DRS)和电子自旋共振谱(ESR)等对样品进行了详细的表征。以紫外光光催化降解甲基橙为反应模型评价了样品的光催化性能。结果表明:沉淀法合成的立方晶型Sb2O3纳米晶颗粒小,表现出良好的光催化性能。对立方晶型Sb2O3纳米晶光催化降解甲基橙的原因进行了探讨,并提出了降解甲基橙的反应机理。  相似文献   

3.
The micro-sized Sb2O3 octahedra can be synthesized on a large scale via a simple PEG-1000 polymer-assisted hydrothermal route (PAHR) in the temperature range of 160-180 °C for 10-14 h. The structures, compositions, and morphologies of the as-synthesized products are derived from X-ray power diffraction pattern, X-ray photoelectron spectra, and field emission scanning electronic microscope. Meanwhile, the optical properties of the micro-sized Sb2O3 octahedra are studied by their photoluminescene spectroscopy and Raman spectrum. Furthermore, the possible growth mechanism of the micro-metered Sb2O3 octahedra is discussed on the basis of a series of supplementary experiments. And it has been found that PEG-1000, sodium tartrate, the reaction temperature, and the reaction time have considerable effects on the final morphology of Sb2O3, while the pH value has an influence on the formation of the Sb2O3 crystals.  相似文献   

4.
纳米Sb2O3的制备与性能研究   总被引:2,自引:0,他引:2  
由于Sb2O3是一种性能优良的无机阻燃剂,并与卤素阻燃剂有很好的协效作用[1],1998年,全球用于阻燃的Sb2O3达80kt以上,占阻燃剂总耗量的7%[2]。但由于其本身的极性特点,加入到纤维、塑料等高分子材料中,材料的力学性能受到很大损失[3],因此对传统的微米级的Sb2O3进行超细、表面处  相似文献   

5.
采用溶剂热法-旋涂法构建了Sb2O3/BiVO4/WO3半导体异质结,并采用X射线衍射、扫描电子显微镜、X射线光电子能谱等手段表征了其物化性质。在1.23 V(vs RHE)电位下,BiVO4/WO3的光电流密度相对于BiVO4提高了2倍。进一步复合Sb2O3之后,虽然Sb2O3/BiVO4/WO3薄膜的光电流密度有所下降,但其光电催化产H2O2的法拉第效率和产生速率得到明显提升。在1.89V(vs RHE)电位下,3c-Sb2O3/BiVO4/WO3薄膜产 H2O2的法拉第效率提高到约 19%;1c-Sb2O3/BiVO4/WO3薄膜 H2O2产生速率从约2.1 μmol·h-1·cm-2提高到约3.6 μmol·h-1·cm-2。此外,Sb2O3的复合显著提高了BiVO4/WO3电极材料的光电催化稳定性。  相似文献   

6.
采用溶剂热法-旋涂法构建了Sb2O3/BiVO4/WO3半导体异质结,并采用X射线衍射、扫描电子显微镜、X射线光电子能谱等手段表征了其物化性质。在1.23 V(vs RHE)电位下,BiVO4/WO3的光电流密度相对于BiVO4提高了2倍。进一步复合Sb2O3之后,虽然Sb2O3/BiVO4/WO3薄膜的光电流密度有所下降,但其光电催化产H2O2的法拉第效率和产生速率得到明显提升。在1.89V(vs RHE)电位下,3c-Sb2O3/BiVO4/WO3薄膜产H2O2的法拉第效率提高到约19%;1c-Sb2O  相似文献   

7.
对沉淀法合成的p区金属氧化物Ga2O3和Sb2O3紫外光光催化降解盐酸四环素的性能进行了研究,讨论了制备条件对光催化性能的影响。最佳制备条件下得到的Ga2O3-900和Sb2O3-500样品光催化性能存在巨大差异,通过X射线粉末衍射、傅里叶红外光谱、N2吸附-脱附测试、荧光光谱、拉曼光谱、电化学分析及活性物种捕获实验等对样品进行分析,研究二者光催化降解盐酸四环素的机理,揭示影响光催化性能差异的本质因素。结果表明,Ga2O3和Sb2O3光催化性能差异主要归结于二者不同的电子和晶体结构、表面所含羟基数量及光催化降解机理。  相似文献   

8.
对沉淀法合成的p区金属氧化物Ga2O3和Sb2O3紫外光光催化降解盐酸四环素的性能进行了研究,讨论了制备条件对光催化性能的影响。最佳制备条件下得到的Ga2O3-900和Sb2O3-500样品光催化性能存在巨大差异,通过X射线粉末衍射、傅里叶红外光谱、N2吸附-脱附测试、荧光光谱、拉曼光谱、电化学分析及活性物种捕获实验等对样品进行分析,研究二者光催化降解盐酸四环素的机理,揭示影响光催化性能差异的本质因素。结果表明,Ga2O3和Sb2O3光催化性能差异主要归结于二者不同的电子和晶体结构、表面所含羟基数量及光催化降解机理。  相似文献   

9.
The clinopyroxene compounds LiFeSi2O6 and LiFeGe2O6 have been investigated by constant wavelength neutron diffraction at low temperatures and by bulk magnetic measurements. Both compounds are monoclinic, space group P21/c and do not exhibit a change in nuclear symmetry down to 1.4 and 5 K respective. However, they transform to a magnetically ordered state below 20 K. LiFeSi2O6 shows a simple magnetic structure with no indication of an incommensurate modulation. The magnetic space group is P21/c′ and the structure is described by a ferromagnetic coupling of spins within the infinite M1 chains of edge-sharing octahedra, while the coupling between these M1 chains is antiferromagnetic. The magnetic phase transition is accompanied by magnetostriction of the lattice when passing through the magnetic phase transition. The magnetic structure of LiFeGe2O6 is different to the silicate: the space group is and the magnetic unit cell doubled along the a-direction. Within the M1 chains spins are coupled antiferromagnetically, while the chain to chain coupling is antiferromagnetic when coupling goes via the GeB tetrahedron and ferromagnetic when it goes via the GeA tetrahedron.  相似文献   

10.
The crystal structures of K2S2O7, KNaS2O7 and Na2S2O7 have been solved and/or refined from X-ray synchrotron powder diffraction data and conventional single-crystal data. K2S2O7: From powder diffraction data, monoclinic C2/c, Z=4, a=12.3653(2), b=7.3122(1), , β=93.0792(7)°, RBragg=0.096. KNaS2O7: From powder diffraction data; triclinic , Z=2, a=5.90476(9), b=7.2008(1), , α=101.7074(9), β=90.6960(7), γ=94.2403(9)°, RBragg=0.075. Na2S2O7: From single-crystal data; triclinic , Z=2, a=6.7702(9), b=6.7975(10), , α=116.779(2), β=96.089(3), γ=84.000(3)°, RF=0.033. The disulphate anions are essentially eclipsed. All three structures can be described as dichromate-like, where the alkali cations coordinate oxygens of the isolated disulphate groups in three-dimensional networks. The K-O and Na-O coordinations were determined from electron density topology and coordination geometry. The three structures have a cation-disulphate chain in common. In K2S2O7 and Na2S2O7 the neighbouring chains are antiparallel, while in KNaS2O7 the chains are parallel. The differences between the K2S2O7 and Na2S2O7 structures, with double-, respectively single-sided chain connections and straight, respectively, corrugated structural layers can be understood in terms of the differences in size and coordinating ability of the cations.  相似文献   

11.
Sb2O3isanessentialsynergistofalmostallthehalogenatedflameretardants.Themechanicalproper-tiesandflameretardancyofflameretardingmaterialsaregreatlyinfluencedbythesizeofSb2O3.WhennanosizedSb2O3isappliedtotheflameretardingpolymericmaterials,themechanicalprope…  相似文献   

12.
Transparent Nd: BiB3O6 crystal has been grown by top-seeded method. The refraction indices of the crystal were measured and the parameters of chromatic dispersion were fitted. The room temperature absorption spectra of the crystal have been measured and compared with that of 0.2 mol/L NdCl3 solution. According to Judd-Ofelt (JO) theory, the spectral strength parameters Ω2 = 0.1776×10−20 cm2, Ω4 = 0.1282−10−201 cm2 and Ω6 = 0.1357X10-20 cm2 of Nd3+ ion were fitted. The radiative transition probabilities AJ,J’, oscillator strengths fJ,J’, radiative lifetime rand the branching ratio βJ’ have all been calculated. Based on these parameters, the properties and application perspective are discussed.  相似文献   

13.
The high-temperature hexagonal forms of BaTa2O6 and Ba0.93Nb2.03O6 have P6/mmm symmetry with unit-cell parameters a=21.116(1) Å, c=3.9157(2) Å and a=21.0174(3) Å, c=3.9732(1) Å, respectively. Single crystal X-ray structure refinements for both phases are generally consistent with a previously proposed model, except for displacements of some Ba atoms from high-symmetry positions. The structures are based on a framework of corner- and edge-connected Nb/Ta-centred octahedra, with barium atoms occupying sites in four different types of [0 0 1] channels with hexagonal, triangular, rectangular and pentagonal cross-sections. The refinements showed that the non-stoichiometry in the niobate phase is due to barium atom vacancies in the pentagonal channels and to extra niobium atoms occupying interstitial sites with tri-capped trigonal prismatic coordination. The origin of the non-stoichiometry is attributed to minimisation of non-bonded Ba-Ba repulsions. The hexagonal structure is related to the structures of the low-temperature forms of BaNb2O6 and BaTa2O6, through a 30° rotation of the hexagonal rings of octahedra centred at the origin.  相似文献   

14.
通过调节B2O3-Bi2O3-ZnO-Al2O3(BBZA)玻璃的添加量研究其对钛酸钡(BaTiO3)陶瓷烧结条件、晶体结构和介电性能的影响。结果表明:添加适量的BBZA玻璃能够有效地将BaTiO3陶瓷烧结温度由1 350℃降至950℃,并使其致密化。同时,添加BBZA玻璃后,BaTiO3的晶体结构随着烧结温度的升高而发生转变(立方相→四方相)。另外,BBZA玻璃的引入使BaTiO3陶瓷的居里峰得到了有效的抑制和拓宽。陶瓷微观形貌显示,玻璃相均匀分布在BaTiO3晶粒表面。优化的BaTiO3陶瓷制备条件如下:BBZA添加量(质量分数)为2.0%,烧结温度为950℃。在该条件下制备的BaTiO3陶瓷介电常数达到1 364,介电损耗低至1.2%。  相似文献   

15.
通过调节B2O3‐Bi2O3‐ZnO‐Al2O3(BBZA)玻璃的添加量研究其对钛酸钡(BaTiO3)陶瓷烧结条件、晶体结构和介电性能的影响。结果表明:添加适量的BBZA玻璃能够有效地将BaTiO3陶瓷烧结温度由1350℃降至950℃,并使其致密化。同时,添加BBZA玻璃后,BaTiO3的晶体结构随着烧结温度的升高而发生转变(立方相→四方相)。另外,BBZA玻璃的引入使BaTiO3陶瓷的居里峰得到了有效的抑制和拓宽。陶瓷微观形貌显示,玻璃相均匀分布在BaTiO3晶粒表面。优化的BaTiO3陶瓷制备条件如下:BBZA添加量(质量分数)为2.0%,烧结温度为950℃。在该条件下制备的BaTiO3陶瓷介电常数达到1364,介电损耗低至1.2%。  相似文献   

16.
The complete Raman spectrum of arsenolite, cubic crystalline As4O6, is reported for the first time. The previously unseen Eg mode has been found at 443 cm−1. Further, there is additional support for the assignment of the 415 cm−1 mode as T2g.  相似文献   

17.
The reaction of UO3 and TeO3 with a KCl flux at 800 °C for 3 days yields single crystals of K4[(UO2)5(TeO3)2O5]. The structure of the title compound consists of layered, two-dimensional sheets arranged in a stair-like topology separated by potassium cations. Contained within these sheets are one-dimensional uranium oxide ribbons consisting of UO7 pentagonal bipyramids and UO6 tetragonal bipyramids. The ribbons are in turn linked by corner-sharing with trigonal pyramidal TeO3 units to form sheets. The lone-pair of electrons from the TeO3 groups are oriented in opposite directions with respect to one another on each side of the sheets rendering each individual sheet nonpolar. The potassium cations form contacts with nearby tellurite units and axial uranyl oxygen atoms. Crystallographic data (193 K, MoKα, ): triclinic, space group , , , , α=99.642(1)°, β=93.591(1)°, γ=100.506(1)°, , Z=1,R(F)=4.19% for 149 parameters and 2583 reflections with I>2σ(I).  相似文献   

18.
The new mixed oxide having composition close to Ca7Co3Ga5O18 was synthesized from CaCO3, Co3O4 and Ga2O3 at 1150 °C in air and studied by neutron and synchrotron X-ray powder diffraction, selected-area electron diffraction and high-resolution electron microscopy. The structure was refined, using time-of-flight (TOF) neutron powder diffraction data, in space group F432, with and Z=8, to RF=0.7%. It is considerably disordered, with four different tetrahedral sites randomly occupied by Co and Ga atoms at a ratio of 1:2. The tetrahedra form a disordered (Co1/3Ga2/3)O2 3D-framework inside which isolated CoO6 octahedra, surrounded by 8 Ca atoms, are located. The structure is related to the ordered structure of Ca14Al10Zn6O35. Electron diffraction patterns confirmed the symmetry and unit cell and revealed no diffuse scattering. High-resolution electron microscopy images showed the absence of extended structural defects.  相似文献   

19.
The electronic structure of SrAl2O4 is calculated by density functional method and exchange and correlation have been treated by the generalized gradient approximation within the scheme due to Perdew-Burke-Ernzerhof. The bond length and bond covalency are also calculated by chemical bond method. Compared with the SrAl2O4 bulk crystal, the bond covalency of nanocrystal has an increasing trend; its band gap also is wider; the bond lengths of SrAl2O4 nanocrystal become shorter, which is responsible for the change of the covalency and band gap.  相似文献   

20.
The P63 (a=2ap, b=2bp, c=cp) crystal structure reported for BaAl2O4 at room temperature has been carefully re-investigated by a combined transmission electron microscopy and neutron powder diffraction study. It is shown that the poor fit of this P63 (a=2ap, b=2bp, c=cp) structure model for BaAl2O4 to neutron powder diffraction data is primarily due to the failure to take into account coherent scattering between different domains related by enantiomorphic twinning of the P6322 parent sub-structure. Fast Fourier transformation of [0 0 1] lattice images from small localized real space regions (∼10 nm in diameter) are used to show that the P63 (a=2ap, b=2bp, c=cp) crystal structure reported for BaAl2O4 is not correct on the local scale. The correct local symmetry of the very small nano-domains is most likely orthorhombic or monoclinic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号