首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper considers how the listening scores obtained for audio signals and psychological impressions for speech audibility change when factors such as hearing loss due to aging are taken into account. Concretely, frequency filters for simulating hearing loss due to factors such as aging are first prepared. Next, psychological listening experiments are conducted in which both the audio signal and the noise passing through the above-mentioned filters are transmitted to subjects with normal hearing. Using the observed experimental data, the relationships between the weighted-mean spectral distance and the listening scores of the audio signals and psychological impressions with respect to speech audibility are investigated. Next, based on these relationships, problems associated with the prediction of listening scores of audio signals and psychological impressions with respect to speech audibility are discussed. The predicted results are in good agreement with the observed values.  相似文献   

2.
For ideal speech communication in public spaces, it is important to determine the optimum speech level for various background noise levels. However, speech intelligibility scores, which is conventionally used as the subjective listening test to measure the quality of speech communication, is near perfect in most everyday situations. For this reason, it is proposed to determine optimum speech levels for speech communication in public spaces by using listening difficulty ratings. Two kinds of listening test were carried out in this work. The results of the tests and our previous work [M. Morimoto, H. Sato, and M. Kobayashi, J. Acoust. Soc. Am. 116, 1607-1613 (2004)] are jointly discussed for suggesting the relation between the optimum speech level and background noise level. The results demonstrate that: (1) optimum speech level is constant when background noise level is lower than 40 dBA, (2) optimum speech level appears to be the level, which maintains around 15 dBA of SN ratio when the background noise level is more than 40 dBA, and (3) listening difficulty increases as speech level increases under the condition where SN ratio is good enough to keep intelligibility near perfect.  相似文献   

3.
The effect of ambient noise on vocal output and the preferred listening level of conversational speech was investigated under conditions typical of everyday speech communication. For a speaker-listener distance of 1 m, vocal output and the preferred listening level in quiet were both about 50 dB(A). Deviations from this value were observed when the noise level exceeded a level of about 40 dB(A). The regression lines for the data points above this level showed a 3 dB rise for a 10 dB rise in noise level. The experiments further suggest that both speaker and listener (when the latter is able to control the playback level of recorded speech) try to compensate for the noise interference by raising the level of speech in order to keep the (subjective) loudness of speech in noise equal to the loudness of speech in quiet.  相似文献   

4.
Noise reduction in cochlear implants has achieved significant speech perception improvements through spectral subtraction and signal-to-noise ratio based noise reduction techniques. Current methods use gain functions derived through mathematical optimization or motivated by normal listening psychoacoustic experiments. Although these gain functions have been able to improve speech perception, recent studies have indicated that they are not optimal for cochlear implant noise reduction. This study systematically investigates cochlear implant recipients' speech perception and listening preference of noise reduction with a range of gain functions. Results suggest an advantageous gain function and show that gain functions currently used for noise reduction are not optimal for cochlear implant recipients. Using the cochlear implant optimised gain function, a 27% improvement over the current advanced combination encoder (ACE) stimulation strategy in speech weighted noise and a 7% improvement over current noise reduction strategies were observed in babble noise conditions. The optimized gain function was also most preferred by cochlear implant recipients. The CI specific gain function derived from this study can be easily incorporated into existing noise reduction strategies, to further improve listening performance for CI recipients in challenging environments.  相似文献   

5.
为了给双耳听力设备佩戴者带来更好的语音可懂度,提出了一种利用双耳时间差与声级差的近场语音增强算法,该方法首先利用这两种差异来估计语音的功率谱和语音的相干函数,然后计算干扰噪声在左右耳间的头相关传输函数的比值,最后构造两个维纳滤波器。客观评价的参数显示该算法去噪效果优于对比算法而目标语音的时间差误差和声级差误差低于对比算法。主观的言语接受阈测试表明该方法能有效提高语音可懂度。结果表明,该算法在能够有效去除干扰噪声的同时,保留了目标语音的空间信息。   相似文献   

6.
In the present study, the effects of interference from combined noises on speech transmission were investigated in a simulated open public space. Sound fields for dominant noises were predicted using a typical urban square model surrounded by buildings. Then road traffic noise and two types of construction noises, corresponding to stationary and impulsive noises, were selected as background noises. Listening tests were performed on a group of adults, and the quality of speech transmission was evaluated using listening difficulty as well as intelligibility scores. During the listening tests, two factors that affect speech transmission performance were considered: (1) temporal characteristics of construction noise (stationary or impulsive) and (2) the levels of the construction and road traffic noises. The results indicated that word intelligibility scores and listening difficulty ratings were affected by the temporal characteristics of construction noise due to fluctuations in the background noise level. It was also observed that listening difficulty is unable to describe the speech transmission in noisy open public spaces showing larger variation than did word intelligibility scores.  相似文献   

7.
In this paper, two speech enhancement algorithms (SEAs) based on spectral subtraction (SS) principle have been evaluated for bilateral cochlear implant (BCI) users. Specifically, dual-channel noise power spectral estimation algorithm using power spectral densities (PSD) and cross power spectral density (CPSD) of the observed signals was studied. The enhanced speech signals were obtained using either Dual Channel Non Linear Spectral Subtraction ‘DC-NLSS’ or Dual-Channel Multi-Band Spectral Subtraction ‘DC-MBSS’ algorithms. For performance evaluation, some objective speech assessment tests relying on Perceptual Evaluation of Speech Quality (PESQ) score and speech Itakura-Saito (IS) distortion measurement were performed to fix the optimal number of frequency band needed in DC-MBSS algorithm. In order to evaluate the speech intelligibility, subjective listening tests were assessed with 50 normal hearing listeners using a specific BCI simulator and with three deafened BCI patients. Experimental results, obtained using French Lafon database corrupted by an additive babble noise at different Signal-to-Noise Ratios (SNR), showed that DC-MBSS algorithm improves speech understanding better than DC-NLSS algorithm for single and multiple interfering noise sources.  相似文献   

8.
The acceptable range of speech level as a function of background noise level was investigated on the basis of word intelligibility scores and listening difficulty ratings. In the present study, the acceptable range is defined as the range that maximizes word intelligibility scores and simultaneously does not cause a significant increase in listening difficulty ratings from the minimum ratings. Listening tests with young adult and elderly listeners demonstrated the following. (1) The acceptable range of speech level for elderly listeners overlapped that for young listeners. (2) The lower limit of the acceptable speech level for both young and elderly listeners was 65 dB (A-weighted) for noise levels of 40 and 45 dB (A-weighted), a level with a speech-to-noise ratio of +15 dB for noise levels of 50 and 55 dB, and a level with a speech-to-noise ratio of +10 dB for noise levels from 60 to 70 dB. (3) The upper limit of the acceptable speech level for both young and elderly listeners was 80 dB for noise levels from 40 to 55 dB and 85 dB or above for noise levels from 55 to 70 dB.  相似文献   

9.
Talkers change the way they speak in noisy conditions. For energetic maskers, speech production changes are relatively well-understood, but less is known about how informational maskers such as competing speech affect speech production. The current study examines the effect of energetic and informational maskers on speech production by talkers speaking alone or in pairs. Talkers produced speech in quiet and in backgrounds of speech-shaped noise, speech-modulated noise, and competing speech. Relative to quiet, speech output level and fundamental frequency increased and spectral tilt flattened in proportion to the energetic masking capacity of the background. In response to modulated backgrounds, talkers were able to reduce substantially the degree of temporal overlap with the noise, with greater reduction for the competing speech background. Reduction in foreground-background overlap can be expected to lead to a release from both energetic and informational masking for listeners. Passive changes in speech rate, mean pause length or pause distribution cannot explain the overlap reduction, which appears instead to result from a purposeful process of listening while speaking. Talkers appear to monitor the background and exploit upcoming pauses, a strategy which is particularly effective for backgrounds containing intelligible speech.  相似文献   

10.
The indices for evaluating psychological impression and listening score are first introduced in the case of listening to a Japanese monosyllabic audio signal while subjected to meaningless steady noise. Hereupon, the mutual relationship between the power spectrum level of audio signal and that of external noise is reflected in the above evaluation indices. Next, estimation and/or prediction problems of the psychological impression and listening score are discussed. The predicted values of the psychological impression and listening score are compared with the experimental observed data. A useful index is discussed, considering consistency between predicted and observed values.  相似文献   

11.
Speech intelligibility (PB words) in traffic-like noise was investigated in a laboratory situation simulating three common listening situations, indoors at 1 and 4 m and outdoors at 1 m. The maximum noise levels still permitting 75% intelligibility of PB words in these three listening situations were also defined. A total of 269 persons were examined. Forty-six had normal hearing, 90 a presbycusis-type hearing loss, 95 a noise-induced hearing loss and 38 a conductive hearing loss. In the indoor situation the majority of the groups with impaired hearing retained good speech intelligibility in 40 dB(A) masking noise. Lowering the noise level to less than 40 dB(A) resulted in a minor, usually insignificant, improvement in speech intelligibility. Listeners with normal hearing maintained good speech intelligibility in the outdoor listening situation at noise levels up to 60 dB(A), without lip-reading (i.e., using non-auditory information). For groups with impaired hearing due to age and/or noise, representing 8% of the population in Sweden, the noise level outdoors had to be lowered to less than 50 dB(A), in order to achieve good speech intelligibility at 1 m without lip-reading.  相似文献   

12.
The effects on speech intelligibility of three different noise reduction algorithms (spectral subtraction, minimal mean squared error spectral estimation, and subspace analysis) were evaluated in two types of noise (car and babble) over a 12 dB range of signal-to-noise ratios (SNRs). Results from these listening experiments showed that most algorithms deteriorated intelligibility scores. Modeling of the results with a logit-shaped psychometric function showed that the degradation in intelligibility scores was largely congruent with a constant shift in SNR, although some additional degradation was observed at two SNRs, suggesting a limited interaction between the effects of noise suppression and SNR.  相似文献   

13.
Confusion patterns among English consonants were examined using log-linear modeling techniques to assess the influence of low-pass filtering, shaped noise, presentation level, and consonant position. Ten normal-hearing listeners were presented consonant-vowel (CV) and vowel-consonant (VC) syllables containing the vowel /a/. Stimuli were presented in quiet and in noise, and were either filtered or broadband. The noise was shaped such that the effective signal level in each 1/3 octave band was equivalent in quiet and noise listening conditions. Three presentation levels were analyzed corresponding to the overall rms level of the combined speech stimuli. Error patterns were affected significantly by presentation level, filtering, and consonant position as a complex interaction. The effect of filtering was dependent on presentation level and consonant position. The effects stemming from the noise were less pronounced. Specific confusions responsible for these effects were isolated, and an acoustical interaction is suggested, stressing the spectral characteristics of the signals and their modification by presentation level and filtering.  相似文献   

14.
Reverberation interferes with the ability to understand speech in rooms. Overlap-masking explains this degradation by assuming reverberant phonemes endure in time and mask subsequent reverberant phonemes. Most listeners benefit from binaural listening when reverberation exists, indicating that the listener's binaural system processes the two channels to reduce the reverberation. This paper investigates the hypothesis that the binaural word intelligibility advantage found in reverberation is a result of binaural overlap-masking release with the reverberation acting as masking noise. The tests utilize phonetically balanced word lists (ANSI-S3.2 1989), that are presented diotically and binaurally with recorded reverberation and reverberation-like noise. A small room, 62 m3, reverberates the words. These are recorded using two microphones without additional noise sources. The reverberation-like noise is a modified form of these recordings and has a similar spectral content. It does not contain binaural localization cues due to a phase randomization procedure. Listening to the reverberant words binaurally improves the intelligibility by 6.0% over diotic listening. The binaural intelligibility advantage for reverberation-like noise is only 2.6%. This indicates that binaural overlap-masking release is insufficient to explain the entire binaural word intelligibility advantage in reverberation.  相似文献   

15.
This paper reports the results of a large scale, detailed acoustic survey of 42 open plan classrooms of varying design in the UK each of which contained between 2 and 14 teaching areas or classbases. The objective survey procedure, which was designed specifically for use in open plan classrooms, is described. The acoustic measurements relating to speech intelligibility within a classbase, including ambient noise level, intrusive noise level, speech to noise ratio, speech transmission index, and reverberation time, are presented. The effects on speech intelligibility of critical physical design variables, such as the number of classbases within an open plan unit and the selection of acoustic finishes for control of reverberation, are examined. This analysis enables limitations of open plan classrooms to be discussed and acoustic design guidelines to be developed to ensure good listening conditions. The types of teaching activity to provide adequate acoustic conditions, plus the speech intelligibility requirements of younger children, are also discussed.  相似文献   

16.
Acceptable noise level (ANL) is a measure of a listener's acceptance of background noise when listening to speech. A consistent finding in research on ANL is large intersubject variability in the acceptance of background noise. This variability is not related to age, gender, hearing sensitivity, type of background noise, speech perception in noise performance, cochlear responses, or efferent activity of the medial olivocochlear pathway. In the present study, auditory evoked potentials were examined in 21 young females with normal hearing with low and high acceptance of background noise to determine whether differences in judgments of background noise are related to differences measured in aggregate physiological responses from the auditory nervous system. Group differences in the auditory brainstem response, auditory middle latency response, and cortical, auditory late latency response indicate that differences in more central regions of the nervous system account for, at least in part, the variability in listeners' willingness to accept background noise when listening to speech.  相似文献   

17.
This paper focuses on masking speech with meaningless steady noise as a way of realizing a comfortable sound environment. As a basis for research, meaningless steady noise at minimum sound pressure levels for masking of male or female meaningful speech is considered, based on psychological experiments using a method of adjustment. From the results, band-limited pink noise can be selected as the most effective noise for masking of speech. In the case of speech with a lower sound pressure level, the sound pressure level of the meaningless steady noise needs to be a little higher.  相似文献   

18.
The word recognition ability of 4 normal-hearing and 13 cochlearly hearing-impaired listeners was evaluated. Filtered and unfiltered speech in quiet and in noise were presented monaurally through headphones. The noise varied over listening situations with regard to spectrum, level, and temporal envelope. Articulation index theory was applied to predict the results. Two calculation methods were used, both based on the ANSI S3.5-1969 20-band method [S3.5-1969 (American National Standards Institute, New York)]. Method I was almost identical to the ANSI method. Method II included a level- and hearing-loss-dependent calculation of masking of stationary and on-off gated noise signals and of self-masking of speech. Method II provided the best prediction capability, and it is concluded that speech intelligibility of cochlearly hearing-impaired listeners may also, to a first approximation, be predicted from articulation index theory.  相似文献   

19.
This study investigated which acoustic cues within the speech signal are responsible for bimodal speech perception benefit. Seven cochlear implant (CI) users with usable residual hearing at low frequencies in the non-implanted ear participated. Sentence tests were performed in near-quiet (some noise on the CI side to reduce scores from ceiling) and in a modulated noise background, with the implant alone and with the addition, in the hearing ear, of one of four types of acoustic signals derived from the same sentences: (1) a complex tone modulated by the fundamental frequency (F0) and amplitude envelope contours; (2) a pure tone modulated by the F0 and amplitude contours; (3) a noise-vocoded signal; (4) unprocessed speech. The modulated tones provided F0 information without spectral shape information, whilst the vocoded signal presented spectral shape information without F0 information. For the group as a whole, only the unprocessed speech condition provided significant benefit over implant-alone scores, in both near-quiet and noise. This suggests that, on average, F0 or spectral cues in isolation provided limited benefit for these subjects in the tested listening conditions, and that the significant benefit observed in the full-signal condition was derived from implantees' use of a combination of these cues.  相似文献   

20.
The present study examined the effect of combined spectral and temporal enhancement on speech recognition by cochlear-implant (CI) users in quiet and in noise. The spectral enhancement was achieved by expanding the short-term Fourier amplitudes in the input signal. Additionally, a variation of the Transient Emphasis Spectral Maxima (TESM) strategy was applied to enhance the short-duration consonant cues that are otherwise suppressed when processed with spectral expansion. Nine CI users were tested on phoneme recognition tasks and ten CI users were tested on sentence recognition tasks both in quiet and in steady, speech-spectrum-shaped noise. Vowel and consonant recognition in noise were significantly improved with spectral expansion combined with TESM. Sentence recognition improved with both spectral expansion and spectral expansion combined with TESM. The amount of improvement varied with individual CI users. Overall the present results suggest that customized processing is needed to optimize performance according to not only individual users but also listening conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号