首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phase transitions in the elpasolite-type K3AlF6 complex fluoride were investigated using differential scanning calorimetry, electron diffraction and X-ray powder diffraction. Three phase transitions were identified with critical temperatures , and . The α-K3AlF6 phase is stable below T1 and crystallizes in a monoclinic unit cell with a=18.8588(2)Å, b=34.0278(2)Å, c=18.9231(1)Å, β=90.453(1)° (a=2accc, b=4bc, c=ac+2cc; ac, bc, cc—the basic lattice vectors of the face-centered cubic elpasolite structure) and space group I2/a or Ia. The intermediate β phase exists only in very narrow temperature interval between T1 and T2. The γ polymorph is stable in the T2<T<T3 temperature range and has an orthorhombic unit cell with a=36.1229(6)Å, b=17.1114(3)Å, c=12.0502(3)Å (a=3ac−3cc, b=2bc, c=ac+cc) at 250 °C and space group Fddd. Above T3 the cubic δ polymorph forms with ac=8.5786(4)Å at 400 °C and space group . The similarity between the K3AlF6 and K3MoO3F3 compounds is discussed.  相似文献   

2.
The organic-inorganic hybrid materials vanadium oxide [VIVO2(phen)2]·6H2O (1) and [(2,2′-bipy)2VVO2](H2BO3)·3H2O (2) have been conventional and hydrothermal synthesized and characterized by single crystal X-ray diffraction, elemental analyses, respectively. Although the method and the ligand had been used in the syntheses of the compounds (1) and (2) are different, they almost possess similar structure. They all exhibit the distorted octahedral [VO2N4] unit with organonitrogen donors of the phen and 2,2′-bipy ligands, respectively, which coordinated directly to the vanadium oxide framework. And they are both non-mixed-valence complexes. But the compound (1) is isolated, and the compound (2) consists of a cation of [(2,2′-bipy)2VVO2]+ and an anion of (H2BO3). So the valence of vanadium of (1) and (2) are tetravalence and pentavalence, respectively. Meanwhile it is noteworthy that π-π stacking interaction between adjacent phen and 2,2′-bipy groups in compounds 1 and 2 also play a significant role in stabilization of the structure. Thus, the structure of [VIVO2(phen)2]·6H2O and [(2,2′-bipy)2VVO2](H2BO3)·3H2O are both further extended into interesting three-dimensional supramolecular. Crystal data: (1) Triclinic, a=8.481(4), b=12.097(5), and α=66.32(2), β=82.97(3), and γ=82.59(4)°, Z=2, R1=0.0685, wR2=0.1522. (2) Triclinic, a=6.643(13), b=11.794(2), and α=101.39(3), β=101.59(3), and γ=97.15(3)°, Z=2, R1=0.0736, wR2=0.1998.  相似文献   

3.
Two new zinc phosphites [Zn2(HPO3)2(H2PO3)][C3H5N2] 1 and [Zn2(HPO3)3][C4H7N2]2·2H2O 2 have been hydrothermally synthesized templated by imidazole and 2-methylimidazole. Single-crystal X-ray diffraction analysis reveals that the two compounds have the similar inorganic framework structures, which both exhibit 2D double layer structures with double 12-membered rings. Due to the different space-filling effect of the guest molecules, the stacking mode of adjacent layers and the arrangement mode of the organic amines are distinct. In 1, the adjacent layers are stacked in an -ABAB- sequence and monoprotonated imidazole molecules sit in the middle of 12MR windows, while in 2, the layers are stacked in an -AAAA- pattern. Monoprotonated 2-methylimidazole molecules occupy two different sites, one inserts into 12MR and the other resides in the interlayer region. Crystal data for 1: triclinic, P-1, , , , α=114.71(3)°, β=92.78(3)°, γ=113.04(3)°, , Z=2; for 2: triclinic, P-1, , , , α=68.244(7)°, β=76.143(7)°, γ=63.113(6)°, , Z=2.  相似文献   

4.
The hydrosulfido complexes CpRu(L)(L′)SH react with one equivalent of O-alkyl oxalyl chlorides (ROCOCOCl) to form the corresponding O-alkylthiooxalate complexes CpRu(L)(L′)SCOCO2R (L = L′ = PPh3 (1), (2); L = PPh3, L′ = CO (3); R = Me (a), Et (b)). The reactions of the hydrosulfido complexes with half equivalent of oxalyl chloride produce the bimetallic complexes [CpRu(L)(L′)SCO]2 (L = L′ = PPh3 (4), (5); L = PPh3, L′ = CO (6)). The crystal structures of CpRu(PPh3)2SCOCO2Me (1a) and CpRu(dppe)SCOCO2Et (2b) are reported.  相似文献   

5.
Attempts to prepare alkaline metal uranyl niobates of composition A1−xUNbO6−x/2 by high-temperature solid-state reactions of A2CO3, U3O8 and Nb2O5 led to pure compounds for x=0 and A=Li (1), Na (2), K (3), Cs (4) and for x=0.5 and A=Rb (5), Cs (6). Single crystals were grown for 1, 3, 4, 5, 6 and for the mixed Na0.92Cs0.08UNbO6 (7) compound. Crystallographic data: 1, monoclinic, P21/c, a=10.3091(11), b=6.4414(10), c=7.5602(5) Å, β=100.65(1), Z=4, R1=0.054 (wR2=0.107); 3, 5 and 7 orthorhombic, Pnma, Z=8, with a=10.307(2), 10.272(4) and 10.432(3) Å, b=7.588(1), 7.628(3) and 7.681(2) Å, c=13.403(2), 13.451(5) and 13.853(4) Å, R1=0.023, 0.046 and 0.036 (wR2=0.058, 0.0106 and 0.088) for 3, 5 and 7, respectively; 6, orthorhombic, Cmcm, Z=8, and a=13.952(3), b=10.607(2) Å, c=7.748(2) Å, R1=0.044 (wR2=0.117).The crystal structure of 1 is characterized by layers of uranophane sheet anion topology parallel to the (100) plane. These layers are formed by the association by edge-sharing of chains of edge-shared UO7 pentagonal bipyramids and chains of corner-shared NbO5 square pyramids alternating along the [010] direction. The Li+ ions are located between two consecutive layers and hold them together; the Li+ ions and two layers constitute a neutral “sandwich” {(UNbO6)-(Li)22+-(UNbO6)}. In this unusual structure, the neutral sandwiches are stacked one above another with no formal chemical bonds between the neutral sandwiches.The homeotypic compounds 3, 5, 6, 7 have open-framework structures built from the association by edge-sharing in two directions of parallel chains of edge-shared UO7 pentagonal bipyramids and ribbons of two edge-shared NbO6 octahedra further linked by corners. In 3, 5 and 7, the mono-dimensional large tunnels created in the [001] direction by this arrangement can be considered as the association by rectangular faces of two columns of triangular face-shared trigonal prisms of uranyl oxygens. In 3 and 7, all the trigonal prisms are occupied by the alkaline metal, in 5, they are half-occupied. In 6, the polyhedral arrangement is more symmetric and the tunnels created in the [010] direction are built of face-sharing cubes of uranyl oxygens totally occupied by the Cs atoms. This last compound well illustrates the structure-directing effect of the conterion.  相似文献   

6.
Two new anhydrous sodium borophosphates with one-dimensional structure, Na3B6PO13(1) and Na3BP2O8(2), were synthesized by low-temperature molten salts techniques using boric acid and sodium dihydrogen phosphate as flux, respectively. The crystal structures were solved by means of single-crystal X-ray diffraction (1, orthorhombic, Pnma (no. 62), , , , Z=4; 2 , monoclinic, C2/c (no. 15), , , , β=92.492(5)°, Z=8). Compound 1 is characterized by an infinite chain of containing eight-membered rings in which all vertexes of borate groups contribute to interconnection. Compound 2 reveals an infinite straight chain built of vertex-sharing four-membered rings, and chains in neighboring layers arranged along different orientations. The relations between structures and the synthetic conditions with only traced water are discussed.  相似文献   

7.
This paper reports the syntheses and characterization of two phosphonate compounds with layered structures, namely, Mn2(2-C5H4NPO3)2(H2O) (1) and Zn(6-Me-2-C5H4NPO3) (2). In compound 1, double chains are found in which the {Mn2O2} dimers are linked by both aqua and O-P-O bridges. These double chains are connected through corner-sharing of {MnO5N} octahedra and {CPO3} tetrahedra, forming an inorganic layer. The pyridyl groups fill the inter-layer spaces. In compound 2, each {ZnO3N} tetrahedron is vertex-shared with three {CPO3} tetrahedra and vice versa, hence forming an inorganic honeycomb layer. The pyridyl groups reside between the layers. Magnetic studies show that weak antiferromagnetic interactions are mediated between the manganese ions in compound 1. Crystal data for 1: monoclinic, space group C2/c, , , , β=107.3(1)°. For 2: orthorhombic, space group Pbca, , , .  相似文献   

8.
Two new open-framework zinc phosphites, [M(C6N4H18)][Zn3(HPO3)4] (M=Ni, Co), have been prepared under hydrothermal conditions. Single-crystal X-ray diffraction analysis shows that [Ni(C6N4H18)][Zn3(HPO3)4] (1) and [Co(C6N4H18)][Zn3(HPO3)4] (2) are isostructural and both crystallize in the monoclinic space group C2/c with , , , β=109.83(3)°, Z=4, R1=0.0408 (I>2σ(I)), and wR2=0.1104 (all data) for 1, and , , , β=109.328(2)°, Z=4, R1=0.0380 (I>2σ(I)), and wR2=0.1093 (all data) for 2. The structures of 1 and 2 are built up from strictly alternating ZnO4 tetrahedra and HPO3 pseudo-pyramids linked through oxygen vertices to form the three-dimensional (3-D) open-frameworks with multi-directional intersecting 12-membered ring (12-MR) channels. The M(TETA) (M=Ni, Co) complexes self-assembled under hydrothermal system connect with the inorganic host via M-O-P linkages and interact with inorganic framework through weak H-bonds. The two compounds show intense photoluminescence upon photoexcitation at 235 nm.  相似文献   

9.
Three novel Th(IV) compounds containing heavy oxoanions, Th(SeO3)(SeO4) (1), Th(IO3)2(SeO4)(H2O)3·H2O (2), and Th(CrO4)(IO3)2 (3), have been synthesized under mild hydrothermal conditions. Each of these three distinct structures contain trigonal pyramidal and tetrahedral oxoanions. Compound 1 adopts a three-dimensional structure formed from ThO9 tricapped trigonal prisms, trigonal pyramidal selenite, SeO32-, anions containing Se(IV), and tetrahedral selenate, SeO42-, anions containing Se(VI). The structure of 2 contains two-dimensional porous sheets and occluded water molecules. The Th centers are found as isolated ThO9 tricapped trigonal prisms and are bound by four trigonal pyramidal iodate anions, two tetrahedral selenate anions, and three coordinating water molecules. In the structure of 3, the Th(IV) cations are found as ThO9 tricapped trigonal prisms. Each Th center is bound by six IO31- anions and three CrO42- anions forming a chiral three-dimensional structure. Second-harmonic generation of 532 nm light from 1064 nm radiation by a polycrystalline sample of 3 was observed. Crystallographic data (193 K, MoKα, λ=0.71073): 1; monoclinic, P21/c; , , , β=103.128(1), Z=4, R(F)=2.47% for 91 parameters with 1462 reflections with I>2σ(I); 2, monoclinic, P21/n, , , , β=100.142(2), Z=4, R(F)=4.71% for 158 parameters with 2934 reflections with I>2σ(I); 3, orthorhombic, P212121, , , , Z=4, R(F)=2.04% for 129 parameters with 2035 reflections with I>2σ(I).  相似文献   

10.
The compound (enH2)3.5[As8V14O42(PO4)]·2H2O 1 (en=ethylenediamine) has been synthesized and characterized by means of elemental analysis, IR spectrum, ESR spectrum, XPS spectrum, TG analysis and single crystal X-ray diffraction analysis. The compound 1 crystallizes in monoclinic system, space group C2/c, β=105.59(3), Z=8 and R1(wR2)=0.0398(0.0885). The compound 1 is constructed from [As8V14O42(PO4)]7− anions and H2en cations linked through hydrogen bonds into a network. The [As8V14O42(PO4)]7− cluster consists of 14 VO5 square pyramids linked by 4 As2O5 handle-like units, and includes at its center an ordered PO43− anion.  相似文献   

11.
Two novel 3-D oxalate-containing bismuth compounds of formula (C3N2H5)2 [Bi2(C2O4)4(H2O)2]·2H2O 1 and [NH(C2H5)3][Bi3(C2O4)5] 2 were obtained by hydrothermal synthesis and characterized by single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic P2/n space group with , , , β=97.280(3)°, Z=4, R1=0.0340 and wR2=0.0766 for unique 4734 reflections I>2σ(I). Compound 2 belongs to the orthorhombic Pbcn space group with , , , Z=4, R1=0.0222 and wR2=0.0568 for unique 2472 reflections I>2σ(I). The BiIII centers have nine-fold coordination for 1 and eight-fold for 2 with the Bi atoms in distorted monocapped square antiprism and distorted dodecahedron, respectively. And oxalate ligands adopt different coordination modes: bidentate for 1, bidentate and tricoordinate for 2. Compounds 1 and 2 are both 3-D open-framework structures containing channels with guest molecules. These two compounds exhibit intense blue luminescence with the emission peaks at 419 nm for 1 and 442 nm for 2, respectively, in the solid state at room temperature. These compounds with novel structural frameworks could be useful in the field of photoactive materials.  相似文献   

12.
A novel organically templated vanadium tellurite (NH3CH2CH2NH3)2V2Te6O18 (1) has been hydrothermally synthesized and characterized by elemental analyses, IR, thermal stability analysis, magnetic susceptibilities and single crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic system, space group P21/n, , , , β=94.789(4)°, , Z=2, R1[I>2σ(I)]=0.0187, wR2[I>2σ(I)]=0.0482. Compound 1 exhibits a novel three-dimensional (3D) vanadium tellurite anion framework composed of vanadium, tellurium, and oxygen atoms through covalent bonds, with the [NH3CH2CH2NH3]2+ cations residing in the channels.  相似文献   

13.
Three new uranyl tungstates, A8[(UO2)4(WO4)4(WO5)2] (A=Rb (1), Cs (2)), and Rb6[(UO2)2O(WO4)4] (3), were prepared by high-temperature solid-state reactions and their structures were solved by direct methods on twinned crystals, refined to R1=0.050, 0.042, and 0.052 for 1, 2, and 3, respectively. Compounds 1 and 2 are isostructural, monoclinic P21/n, (1): a=11.100(7), b=13.161(9), , β=90.033(13)°, , Z=8 and (2): , , , β=89.988(2)°, , Z=8. There are four symmetrically independent U6+ sites that form linear uranyl [O=U=O]2+ cations with rather distorted coordination in their equatorial planes. There are six W positions: W(1) and W(2) have square-pyramidal coordination (WO5), whereas W(3), W(4), W(5), and W(6) are tetrahedrally coordinated. The structures are based upon a novel type of one-dimensional (1D) [(UO2)4(WO4)4(WO5)2]4− chains, consisting of WU4O25 pentamers linked by WO4 tetrahedra and WO5 square pyramids. The chains run parallel to the a-axis and are arranged in modulated pseudo-2D-layers parallel to (0 1 0). The A+ cations are in the interlayer space between adjacent pseudo-layers and provide a 3D integrity of the structures. Compounds 1 and 2 are the first uranyl tungstates with 2/3 of W atoms in tetrahedral coordination. Such a high concentration of low-coordinated W6+ cations is probably responsible for the 1D character of the uranyl tungstate units. The compound 3 is triclinic, Pa=10.188(2), b=13.110(2), , α=97.853(3), β=96.573(3), γ=103.894(3)°, , Z=4. There are four U positions in the structure with a typical coordination of a pentagonal bipyramid that contain uranyl ions, UO22+, as apical axes. Among eight W sites, the W(1), W(2), W(3), W(4), W(5), and W(6) atoms are tetrahedrally coordinated, whereas the W(7) and W(8) cations have distorted fivefold coordination. The structure contains chains of composition [(UO2)2O(WO4)4]6− composed of UO7 pentagonal bipyramids and W polyhedra. The chains involve dimers of UO7 pentagonal bipyramids that share common O atoms. The dimers are linked into chains by sharing corners with WO4 tetrahedra. The chains are parallel to [−101] and are arranged in layers that are parallel to (1 1 1). The Rb+ cations provide linkage of the chains into a 3D structure. The compound 1 has many structural and chemical similarities to its molybdate analog, Rb6[(UO2)2O(MoO4)4]. However, the compounds are not isostructural. Due to the tendency of the W6+ cations to have higher-than-fourfold coordination, part of the W sites adopt distorted fivefold coordination, whereas all Mo atoms in the Mo compound are tetrahedrally coordinated. Distribution of the WO5 configurations along the chain extension does not conform to its ‘typical’ periodicity. As a result, both the chain identity period and the unit-cell volume are doubled in comparison to the Mo analog, which leads to a new structure type.  相似文献   

14.
This paper reports the syntheses and characterization of two phosphonate compounds Cd{(2-C5H4NO)CH(OH)PO3}(H2O)2 (1) and Zn{(4-C5H4NO)CH(OH)PO3} (2) based on hydroxy(2-pyridyl N-oxide)methylphosphonic and hydroxy(4-pyridyl N-oxide)methylphosphonic acids. Compound 1 has a chain structure in which dimers of edge-shared {CdO6} octahedra are linked by {CPO3} tetrahedra through corner-sharing. The pyridyl rings reside on the two sides of the inorganic chain. Compound 2 has a layer structure where the inorganic chains made up of corner-sharing {ZnO4} and {CPO3} tetrahedra are covalently connected by pyridyl N-oxide groups. Crystal data for 1: triclinic, space group , a=6.834(1) Å, b=7.539(1) Å, c=10.595(2) Å, α=84.628(3)°, β=74.975(4)°, γ=69.953(4)°. For 2: triclinic, space group , a=5.219(1) Å, b=8.808(2) Å, c=9.270(2) Å, α=105.618(5)°, β=95.179(4)°, γ=94.699(4)°.  相似文献   

15.
A cobalt phosphonate (H3O)6·[Co4(H2O)4(HPMIDA)2(PMIDA)2)]·2H2O, 1, has been synthesized from a mild solvothermal reaction of Co(II) ion with N-(phosphonomethyl)iminodiacetic acid (H4PMIDA). Compound 1 crystallizes in the triclinic space group with cell parameters of , , , α=93.06(3)°, β=99.66(3)°, γ=90.34(3)° and Z=1. Compound 1 shows a novel tetra-nuclear molecular structure. In the crystal lattice, molecules of 1 hydrogen bond to each other to form two-dimensional (2D) layers, which are further linked together by the co-crystallized H2O molecules and H3O+ counter ions through hydrogen bonding to form the 3D supramolecular network. Thermogravimetric analysis, IR spectrum, magnetic susceptibility and luminescent spectra are given.  相似文献   

16.
The magnetic and transport properties of ternary rare-earth chromium germanides RCr0.3Ge2 (R=Y and Tb-Er) have been determined. X-ray and neutron diffraction studies indicate that these compounds have the CeNiSi2-type structure (space group Cmcm) [1]. Magnetic measurements reveal the antiferromagnetic ordering below TN equal to 18.5 K (R=Tb), 11.8 K (Dy), 5.8 K (Ho) and 3.4 K (Er). From the neutron diffraction data the magnetic structures have been determined. For TbCr0.3Ge2 and DyCr0.3Ge2 at low temperatures the magnetic ordering can be described by two vectors k1=(,0,0) and k2=(,0,), and k1=(,0,0) and k2=(,0,), respectively. In HoCr0.3Ge2 and ErCr0.3Ge2 the ordering can be described by one propagation vector equal to (,,0) and (0,0,0.4187(2)), respectively. In DyCr0.3Ge2 some change in the magnetic ordering is observed at Tt=5.1 K. In temperature range from Tt to TN the magnetic ordering is given by one propagation vector k=(,0,0). YCr0.3Ge2 is a Pauli paramagnet down to 1.72 K which suggests that in the entire RCr0.3Ge2 series the Cr atoms do not carry magnetic moments. All compounds studied exhibit metallic character of the electrical conductivity. The temperature dependencies of the lattice parameters reveal strong magnetostriction effect at the respective Nèel temperatures.  相似文献   

17.
The Ni6Se5−xTex, 0<x<∼1.7, system has been carefully investigated via electron diffraction and TEM imaging. They reveal a somewhat disordered modulated superstructure phase arising from Ni ion ordering within an essentially well-defined chalcogen sub-structure. As x, and the underlying parent substructure cell dimensions increase, the incommensurate primary modulation wave-vector q characteristic of this Ni ion ordering quickly swings from close to for x=0 towards for x?0.5. A lock-in to would formally transform the underlying parent Bmmb (ap, bp, cp) structure into a P1a1 (as=2ap, bs=bp, cs=ap+cp) superstructure phase.  相似文献   

18.
Single crystals of two cerium complexes, with mixed-ligands oxalate and glycolate, have been prepared in a closed system, at 200 °C for one month: [Ce2(H2O)3](C2O4)2.5(H3C2O3) 1 and Ce2(C2O4)(H3C2O3)42. 1 crystallizes in the orthorhombic system, space group Pbca, with , , and while 2 crystallizes in the tetragonal system, space group P42/nbc, with , . For both complexes, the three-dimensional framework structure is built up by the linkages of the cerium and all the oxygen atoms of oxalate and glycolate ligands. For 2, its structure presents a nice case of two 3D identical sub-lattices, with 2-fold interpenetration. The only link between these two sub-lattices is assumed by strong hydrogen bonds between the hydroxyl function of the glycolate and the oxygen atoms of the oxalate. The schematized framework of 2, including only the cerium atoms, can be compared to that of cooperite (PtS).For 1, the two independent cerium have 9- or 10-fold coordination, forming a distorted monocapped or bicapped square antiprism polyhedron while for 2, the two independent cerium present 8-fold coordination, forming an almost regular dodecahedron. A quite relevant feature of 2 is the complete absence of water. 2 has been extended to other lanthanides (Ln=Ce…Lu, yttrium included) leading to a family, which has been characterized by infra-red and thermal analysis.  相似文献   

19.
Three new sandwich-type polyoxotungstates (POTs) decorated by nickel-2,2′-bpy complexes [{Ni(2,2′-bpy)2(H2O)}2{Ni(2,2′-bpy)}2 {Ni4(H2O)2(B-α-XW9O34)2}]n− (X=PV, n=4 for 1; X=AsV, n=4 for 2; X=GeIV, n=4 for 3) (2,2′-bpy=2,2′-bipyridine) were successfully synthesized under hydrothermal conditions and structurally characterized by elemental analyses, IR spectroscopy, single-crystal X-ray diffraction, and magnetic properties. Single-crystal structural analyses indicate that 1 and 2 are isostructural and both crystallize in the monoclinic space group C2/c, whereas 3 belongs to the triclinic space group . To our knowledge, 1, 2 and 3 represent rare examples of the organic-inorganic hybrid sandwich-type polyoxometalates functionalized by multiple nickel-aromatic amine complexes. Magnetic measurements of 1 exhibit the presence of ferromagnetic interactions within the rhombic tetranuclear-NiII cluster.  相似文献   

20.
A novel three-dimensional (3D) transition metal selenite Fe3(H2O)(SeO3)3 (1) has been hydrothermally synthesized and characterized by the elemental analyses, IR spectrum, TG analysis and the single-crystal X-ray diffraction. Compound 1 crystallizes in the triclinic system, space group , with a=8.0916(16) Å, b=8.2089(16) Å, c=8.5679(17) Å, α=69.21(3)°, β=62.74(3)°, γ=67.16(3)°, Z=2, and R1[I>2σ(I)]=0.0379. Compound 1 exhibits an interesting 3D framework formed by {FeO6} octahedra and {SeO3} trigonal pyramids via the corner- and/or edge-sharing mode. Furthermore, compound 1 consists of left-handed and right-handed helical chains, which are further entangled to form the double helical chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号