首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
We have been developing the theory of mechanism-based strain gradient plasticity (MSG) to model size-dependent plastic deformation at micron and submicron length scales. The core idea has been to incorporate the concept of geometrically necessary dislocations into the continuum plastic constitutive laws via the Taylor hardening relation. Here we extend this effort to develop a mechanism-based strain gradient theory of crystal plasticity. In this theory, an effective density of geometrically necessary dislocations for a specific slip plane is introduced via a continuum analog of the Peach-Koehler force in dislocation theory and is incorporated into the plastic constitutive laws via the Taylor relation.  相似文献   

2.
We propose a deformation theory of strain gradient crystal plasticity that accounts for the density of geometrically necessary dislocations by including, as an independent kinematic variable, Nye's dislocation density tensor [1953. Acta Metallurgica 1, 153-162]. This is accomplished in the same fashion as proposed by Gurtin and co-workers (see, for instance, Gurtin and Needleman [2005. J. Mech. Phys. Solids 53, 1-31]) in the context of a flow theory of crystal plasticity, by introducing the so-called defect energy. Moreover, in order to better describe the strengthening accompanied by diminishing size, we propose that the classical part of the plastic potential may be dependent on both the plastic slip vector and its gradient; for single crystals, this also makes it easier to deal with the “higher-order” boundary conditions. We develop both the kinematic formulation and its static dual and apply the theory to the simple shear of a constrained strip (example already exploited in Shu et al. [2001. J. Mech. Phys. Solids 49, 1361-1395], Bittencourt et al. [2003. J. Mech. Phys. Solids 51, 281-310], Niordson and Hutchinson [2003. Euro J. Mech. Phys. Solids 22, 771-778], Evers et al. [2004. J. Mech. Phys. Solids 52, 2379-2401], and Anand et al. [2005. J. Mech. Phys. Solids 53, 1789-1826]) to investigate what sort of behaviour the new model predicts. The availability of the total potential energy functional and its static dual allows us to easily solve this simple boundary value problem by resorting to the Ritz method.  相似文献   

3.
4.
Interfaces play an important role for the plastic deformation at the micron scale. In this paper, two types of interface models for isotropic materials are developed and applied in a thin film analysis. The first type, which can also be motivated from dislocation theory, assumes that the plastic work at the interface is stored as a surface energy that is linear in plastic strain. In the second model, the plastic work is completely dissipated and there is no build-up of a surface energy. Both formulations introduce one length scale parameter for the bulk material and one for the interface, which together control the film behaviour. It is demonstrated that the two interface models give equivalent results for a monotonous, increasing load. The combined influence of bulk and interface is numerically studied and it is shown that size effects are obtained, which are controlled by the length scale parameters of bulk and interface.  相似文献   

5.
In the context of single-crystal strain gradient plasticity, we focus on the simple shear of a constrained strip in order to study the effects of the material parameters possibly involved in the modelling. The model consists of a deformation theory suggested and left undeveloped by Bardella [(2007). Some remarks on the strain gradient crystal plasticity modelling, with particular reference to the material length scales involved. Int. J. Plasticity 23, 296–322] in which, for each glide, three dissipative length scales are considered; they enter the model through the definition of an effective slip which brings into the isotropic hardening function the relevant plastic strain gradients, averaged by means of a p-norm. By means of the defect energy (i.e., a function of Nye's dislocation density tensor added to the free energy; see, e.g., Gurtin [2002. A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 5–32]), the model further involves an energetic material length scale. The application suggests that two dissipative length scales may be enough to qualitatively describe the size effect of metals at the microscale, and they are chosen in such a way that the higher-order state variables of the model be the dislocation densities. Moreover, we show that, depending on the crystallography, the size effect governed by the defect energy may be different from what expected (based on the findings of [Bardella, L., 2006. A deformation theory of strain gradient crystal plasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 54, 128–160] and [Gurtin et al. 2007. Gradient single-crystal plasticity with free energy dependent on dislocation densities. J. Mech. Phys. Solids 55, 1853–1878]), leading mostly to some strengthening. In order to investigate the model capability, we also exploit a Γ-convergence technique to find closed-form solutions in the “isotropic limit”. Finally, we analytically show that in the “perfect plasticity” case, should the dissipative length scales be set to zero, the presence of the sole energetic length scale may lead, as in standard plasticity, to non-uniqueness of solutions.  相似文献   

6.
The higher-order stress work-conjugate to slip gradient in single crystals at small strains is derived based on the self-energy of geometrically necessary dislocations (GNDs). It is shown that this higher-order stress changes stepwise as a function of in-plane slip gradient and therefore significantly influences the onset of initial yielding in polycrystals. The higher-order stress based on the self-energy of GNDs is then incorporated into the strain gradient plasticity theory of Gurtin [2002. A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 5-32] and applied to single-slip-oriented 2D and 3D model crystal grains of size D. It is thus found that the self-energy of GNDs gives a D-1-dependent term for the averaged resolved shear stress in such a model grain under yielding. Using published experimental data for several polycrystalline metals, it is demonstrated that the D-1-dependent term successfully explains the grain size dependence of initial yield stress and the dislocation cell size dependence of flow stress in the submicron to several-micron range of grain and cell sizes.  相似文献   

7.
The two-dimensional discrete dislocation dynamics (2D DD) method, consisting of parallel straight edge dislocations gliding on independent slip systems in a plane strain model of a crystal, is often used to study complicated boundary value problems in crystal plasticity. However, the absence of truly three dimensional mechanisms such as junction formation means that forest hardening cannot be modeled, unless additional so-called ‘2.5D’ constitutive rules are prescribed for short-range dislocation interactions. Here, results from three dimensional dislocation dynamics (3D DD) simulations in an FCC material are used to define new constitutive rules for short-range interactions and junction formation between dislocations on intersecting slip systems in 2D. The mutual strengthening effect of junctions on preexisting obstacles, such as precipitates or grain boundaries, is also accounted for in the model. The new ‘2.5D’ DD model, with no arbitrary adjustable parameters beyond those obtained from lower scale simulation methods, is shown to predict athermal hardening rates, differences in flow behavior for single and multiple slip, and latent hardening ratios. All these phenomena are well-established in the plasticity of crystals and quantitative results predicted by the model are in good agreement with experimental observations.  相似文献   

8.
A strain gradient-dependent crystal plasticity approach is presented to model the constitutive behaviour of polycrystal FCC metals under large plastic deformation. In order to be capable of predicting scale dependence, the heterogeneous deformation-induced evolution and distribution of geometrically necessary dislocations (GNDs) are incorporated into the phenomenological continuum theory of crystal plasticity. Consequently, the resulting boundary value problem accommodates, in addition to the ordinary stress equilibrium condition, a condition which sets the additional nodal degrees of freedom, the edge and screw GND densities, proportional (in a weak sense) to the gradients of crystalline slip. Next to this direct coupling between microstructural dislocation evolutions and macroscopic gradients of plastic slip, another characteristic of the presented crystal plasticity model is the incorporation of the GND-effect, which leads to an essentially different constitutive behaviour than the statistically stored dislocation (SSD) densities. The GNDs, by their geometrical nature of locally similar signs, are expected to influence the plastic flow through a non-local back-stress measure, counteracting the resolved shear stress on the slip systems in the undeformed situation and providing a kinematic hardening contribution. Furthermore, the interactions between both SSD and GND densities are subject to the formation of slip system obstacle densities and accompanying hardening, accountable for slip resistance. As an example problem and without loss of generality, the model is applied to predict the formation of boundary layers and the accompanying size effect of a constrained strip under simple shear deformation, for symmetric double-slip conditions.  相似文献   

9.
For higher-order gradient crystal plasticity, a finite deformation formulation is presented. The theory does not deviate much from the conventional crystal plasticity theory. Only a back stress effect and additional differential equations for evolution of the geometrically necessary dislocation (GND) densities supplement the conventional theory within a non-work-conjugate framework in which there is no need to introduce higher-order microscopic stresses that would be work-conjugate to slip rate gradients. We discuss its connection to a work-conjugate type of finite deformation gradient crystal plasticity that is based on an assumption of the existence of higher-order stresses. Furthermore, a boundary-value problem for simple shear of a constrained thin strip is studied numerically, and some characteristic features of finite deformation are demonstrated through a comparison to a solution for the small deformation theory. As in a previous formulation for small deformation, the present formulation applies to the context of multiple and three-dimensional slip deformations.  相似文献   

10.
Predictions are made for the size effect on strength of a random, isotropic two-phase composite. Each phase is treated as an isotropic, elastic-plastic solid, with a response described by a modified deformation theory version of the Fleck-Hutchinson strain gradient plasticity formulation (Fleck and Hutchinson, J. Mech. Phys. Solids 49 (2001) 2245). The essential feature of the new theory is that the plastic strain tensor is treated as a primary unknown on the same footing as the displacement. Minimum principles for the energy and for the complementary energy are stated for a composite, and these lead directly to elementary bounds analogous to those of Reuss and Voigt. For the case of a linear hardening solid, Hashin-Shtrikman bounds and self-consistent estimates are derived. A non-linear variational principle is constructed by generalising that of Ponte Castañeda (J. Mech. Phys. Solids 40 (1992) 1757). The minimum principle is used to derive an upper bound, a lower estimate and a self-consistent estimate for the overall plastic response of a statistically homogeneous and isotropic strain gradient composite. Sample numerical calculations are performed to explore the dependence of the macroscopic uniaxial response upon the size scale of the microstructure, and upon the relative volume fraction of the two phases.  相似文献   

11.
This paper focuses on the unification of two frequently used and apparently different strain gradient crystal plasticity frameworks: (i) the physically motivated strain gradient crystal plasticity models proposed by Evers et al. [2004a. Non-local crystal plasticity model with intrinsic SSD and GND effects. Journal of the Mechanics and Physics of Solids 52, 2379-2401; 2004b. Scale dependent crystal plasticity framework with dislocation density and grain boundary effects. International Journal of Solids and Structures 41, 5209-5230] and Bayley et al. [2006. A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity. International Journal of Solids and Structure 43, 7268-7286; 2007. A three dimensional dislocation field crystal plasticity approach applied to miniaturized structures. Philosophical Magazine 87, 1361-1378] (here referred to as Evers-Bayley type models), where a physical back stress plays the most important role and which are further extended here to deal with truly large deformations, and (ii) the thermodynamically consistent strain gradient crystal plasticity model of Gurtin (2002-2008) (here referred to as the Gurtin type model), where the energetic part of a higher order micro-stress is derived from a non-standard free energy function. The energetic micro-stress vectors for the Gurtin type models are extracted from the definition of the back stresses of the improved Evers-Bayley type models. The possible defect energy forms that yield the derived physically based micro-stresses are discussed. The duality of both type of formulations is shown further by a comparison of the micro-boundary conditions. As a result, this paper provides a direct physical interpretation of the different terms present in Gurtin's model.  相似文献   

12.
In this study, a homogenization theory based on the Gurtin strain gradient formulation and its finite element discretization are developed for investigating the size effects on macroscopic responses of periodic materials. To derive the homogenization equations consisting of the relation of macroscopic stress, the weak form of stress balance, and the weak form of microforce balance, the Y-periodicity is used as additional, as well as standard, boundary conditions at the boundary of a unit cell. Then, by applying a tangent modulus method, a set of finite element equations is obtained from the homogenization equations. The computational stability and efficiency of this finite element discretization are verified by analyzing a model composite. Furthermore, a model polycrystal is analyzed for investigating the grain size dependence of polycrystal plasticity. In this analysis, the micro-clamped, micro-free, and defect-free conditions are considered as the additional boundary conditions at grain boundaries, and their effects are discussed.  相似文献   

13.
In metal grains one of the most important failure mechanisms involves shear band localization. As the band width is small, the deformations are affected by material length scales. To study localization in single grains a rate-dependent crystal plasticity formulation for finite strains is presented for metals described by the reformulated Fleck–Hutchinson strain gradient plasticity theory. The theory is implemented numerically within a finite element framework using slip rate increments and displacement increments as state variables. The formulation reduces to the classical crystal plasticity theory in the absence of strain gradients. The model is used to study the effect of an internal material length scale on the localization of plastic flow in shear bands in a single crystal under plane strain tension. It is shown that the mesh sensitivity is removed when using the nonlocal material model considered. Furthermore, it is illustrated how different hardening functions affect the formation of shear bands.  相似文献   

14.
Length scale parameters introduced in gradient theories of plasticity are calculated in closed form with a continuum dislocation based theory. The similarity of the governing equations in both models for the evolution of plastic deformation of a constrained thin film makes it possible to identify parameters of the gradient plasticity theory with the dislocation based model. A one-to-one identification is not possible given that gradient plasticity does not account for individual dislocations. However, by comparing the mean plastic deformation across the film thickness we find that the length scale parameter, l, introduced in the gradient plasticity theory depends on the geometry as well as material constants.  相似文献   

15.
Under small strains and rotations, we apply a phenomenological higher-order theory of distortion gradient plasticity to the torsion problem, here assumed as a paradigmatic benchmark of small-scale plasticity. Peculiar of the studied theory, proposed about ten years ago by Morton E. Gurtin, is the constitutive inclusion of the plastic spin, affecting both the free energy and the dissipation. In particular, the part of the free energy, called the defect energy, which accounts for Geometrically Necessary Dislocations, is a function of Nye's dislocation density tensor, dependent on the plastic distortion, including the plastic spin. For the specific torsion problem, we implement this distortion gradient plasticity theory into a Finite Element (FE) code characterised by implicit (Backward Euler) time integration, numerically robust and accurate for both viscoplastic and rate-independent material responses. We show that, contrariwise to other higher-order theories of strain gradient plasticity (neglecting the plastic spin), the distortion gradient plasticity can predict some strengthening even if a quadratic defect energy is chosen. On the basis of the results of many FE analyses, concerned with (i) cyclic loading, (ii) switch in the higher-order boundary conditions during monotonic plastic loading, (iii) the use of non-quadratic defect energies, and (iv) the prediction of experimental data, we mainly show that (a) including the plastic spin contribution in a gradient plasticity theory is highly recommendable to model small-scale plasticity, (b) less-than-quadratic defect energies may help in describing the experimental results, but they may lead to anomalous cyclic behaviour, and (c) dissipative (unrecoverable) higher-order finite stresses are responsible for an unexpected mechanical response under non-proportional loading.  相似文献   

16.
A theoretical framework is presented that has potential to cover a large range of strain gradient plasticity effects in isotropic materials. Both incremental plasticity and viscoplasticity models are presented. Many of the alternative models that have been presented in the literature are included as special cases. Based on the expression for plastic dissipation, it is in accordance with Gurtin (J. Mech. Phys. Solids 48 (2000) 989; Int. J. Plast. 19 (2003) 47) argued that the plastic flow direction is governed by a microstress qij and not the deviatoric Cauchy stress σij′ that has been assumed by many others. The structure of the governing equations is of second order in the displacements and the plastic strains which makes it comparatively easy to implement in a finite element programme. In addition, a framework for the formulation of consistent boundary conditions is presented. It is shown that there is a close connection between surface energy of an interface and boundary conditions in terms of plastic strains and moment stresses. This should make it possible to study boundary layer effects at the interface between grains or phases. Consistent boundary conditions for an expanding elastic-plastic boundary are as well formulated. As examples, biaxial tension of a thin film on a thick substrate, torsion of a thin wire and a spherical void under remote hydrostatic tension are investigated.  相似文献   

17.
18.
Recently, several higher-order extensions to the crystal plasticity theory have been proposed to incorporate effects of material length scales that were missing links in the conventional continuum mechanics. The extended theories are classified into work-conjugate and non-work-conjugate types. A common feature of the former is that existence of higher-order stresses work-conjugate to gradients of plastic strain is presumed and an extended principle of virtual work involving such an additional virtual work contribution is formulated. Meanwhile, in the latter type, the higher-order stress quantities do not appear explicitly. Instead, rates of crystallographic slip are influenced by back stresses that arise in response to spatial gradients of the geometrically necessary dislocation densities. The work-conjugate type and the non-work-conjugate type of theories have different theoretical backgrounds and very unlike mathematical representations. Nevertheless, both types of theories predict the same kind of material length scale effects. We have recently shown that there exists some equivalency between the two approaches in the special situation of two-dimensional single slip under small deformation. In this paper, the discussion is extended to a more general situation, i.e. the context of multiple and three-dimensional slip deformations.  相似文献   

19.
Interactions between dislocations and grain boundaries play an important role in the plastic deformation of polycrystalline metals. Capturing accurately the behaviour of these internal interfaces is particularly important for applications where the relative grain boundary fraction is significant, such as ultra fine-grained metals, thin films and micro-devices. Incorporating these micro-scale interactions (which are sensitive to a number of dislocation, interface and crystallographic parameters) within a macro-scale crystal plasticity model poses a challenge. The innovative features in the present paper include (i) the formulation of a thermodynamically consistent grain boundary interface model within a microstructurally motivated strain gradient crystal plasticity framework, (ii) the presence of intra-grain slip system coupling through a microstructurally derived internal stress, (iii) the incorporation of inter-grain slip system coupling via an interface energy accounting for both the magnitude and direction of contributions to the residual defect from all slip systems in the two neighbouring grains, and (iv) the numerical implementation of the grain boundary model to directly investigate the influence of the interface constitutive parameters on plastic deformation. The model problem of a bicrystal deforming in plane strain is analysed. The influence of dissipative and energetic interface hardening, grain misorientation, asymmetry in the grain orientations and the grain size are systematically investigated. In each case, the crystal response is compared with reference calculations with grain boundaries that are either ‘microhard’ (impenetrable to dislocations) or ‘microfree’ (an infinite dislocation sink).  相似文献   

20.
We compare experimental measurements of inhomogeneous plastic deformation in a Ni bicrystal with crystal plasticity simulations. Polychromatic X-ray microdiffraction, orientation imaging microscopy and scanning electron microscopy, were used to characterize the geometrically necessary dislocation distribution of the bicrystal after uniaxial tensile deformation. Changes in the local crystallographic orientations within the sample reflect its plastic response during the tensile test. Elastic strain in both grains increases near the grain boundary. Finite element simulations were used to understand the influence of initial grain orientation and structural inhomogeneities on the geometrically necessary dislocations arrangement and distribution and to understand the underlying materials physics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号