首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Click-evoked and stimulus frequency otoacoustic emissions (CEOAEs and SFOAEs, respectively) were studied in humans during and after postural changes. The subjects were tilted from upright to a recumbent position (head down 30 deg) and upright again. Due to the downward posture change, CEOAEs showed a phase increase (80 deg at 1 kHz) and a level decrease (0.5 at 1 kHz), especially for frequency components below 2 kHz. For SFOAEs, the typical ripple pattern showed a positive shift along the frequency axis, which can be interpreted as a phase shift of the inner-ear component of the microphone signal (90 deg at 1 kHz). This also occurred mainly for frequencies below 2 kHz. The altered posture is thought to cause an increase of the intracranial pressure, and consequently of the intracochlear fluid pressure, which results in an increased stiffness of the stapes system. The observed emission changes are in agreement with predictions from a model in which the stiffness of the cochlear windows was altered. For CEOAEs, the time to regain stability after a downward turn was of the order of 30 s, while this took about 20 s after an upward turn. For SFOAEs, this asymmetry was not found to be present (about 11 s, both for up- and downward turns).  相似文献   

2.
Otoacoustic emissions (OAEs) of two types--spontaneous and evoked distortion products--were studied before, during, and following a period of aspirin use. As previously reported, aspirin consumption uniformly reduced the spontaneous OAEs (SOAEs) to unmeasurable or extremely low levels. Aspirin consumption also reduced the amplitude of the evoked distortion products (EDPs) but did not eliminate them entirely. The amplitude of the EDP and its change with aspirin consumption were related to both the proximity of the EDP to the frequency of the SOAE and to the level of the primaries producing the EDP. At low primary levels, even with the SOAE absent (due to aspirin consumption, or suppression), EDPs near the SOAE frequency were 10-20 dB higher than when they were 100 Hz away from the SOAE frequency.  相似文献   

3.
Click-evoked otoacoustic emissions (CEOAEs) were previously shown to be significantly less strong in homosexual and bisexual females than in heterosexual females. Here it is reported that the spontaneous otoacoustic emissions (SOAEs) of those same 60 homosexual and bisexual females were less numerous and weaker than those in 57 heterosexual females. That is, the SOAEs of the homosexual and bisexual females were intermediate to those of heterosexual females and heterosexual males. The SOAE and CEOAE data both suggest that the cochleas of homosexual and bisexual females have been partially masculinized, possibly as part of some prenatal processes that also masculinized whatever brain structures are responsible for sexual orientation. For males of all sexual orientation, the SOAEs were less numerous and weaker than for the females, and there were no significant differences among the 56 heterosexual, 51 homosexual, and 11 bisexual males. All subjects passed a hearing screening test. When all SOAEs above 3000 Hz were excluded (as a control against incipient, undetected hearing loss) the same results were obtained as with the full range of data (550-9000 Hz). The differential use of oral contraceptives by the heterosexual and nonheterosexual females also could not explain the differences in their OAEs.  相似文献   

4.
The dynamic effects of low-frequency biasing on spontaneous otoacoustic emissions (SOAEs) were studied in human subjects under various signal conditions. Results showed a combined suppression and modulation of the SOAE amplitudes at high bias tone levels. Ear-canal acoustic spectra demonstrated a reduction in SOAE amplitude and growths of sidebands while increasing the bias tone level. These effects varied depending on the relative strength of the bias tone to a particular SOAE. The SOAE magnitudes were suppressed when the cochlear partition was biased in both directions. This quasi-static modulation pattern showed a shape consistent with the first derivative of a sigmoid-shaped nonlinear function. In the time domain, the SOAE amplitudes were modulated with the instantaneous phase of the bias tone. For each biasing cycle, the SOAE envelope showed two peaks each corresponded to a zero crossing of the bias tone. The temporal modulation patterns varied systematically with the level and frequency of the bias tone. These dynamic behaviors of the SOAEs are consistent with the shifting of the operating point along the nonlinear transducer function of the cochlea. The results suggest that the nonlinearity in cochlear hair cell transduction may be involved in the generation of SOAEs.  相似文献   

5.
Comparison between changes that occur simultaneously on spontaneous otoacoustic emissions (SOAEs) and on other cochlear origin phenomena can contribute to the understanding of cochlear micromechanical activity. The temporary changes that arise after short noise exposure are investigated in the following paper. The effects of noise exposure on the threshold microstructure near an SOAE and on the amplitude and frequency of the SOAE were measured. These experimental results indicate the following: (1) exposure to wideband noise for a short time causes a temporary reduction in the SOAE frequency and amplitude, and alters reversibly the threshold microstructure in the vicinity of the SOAE. The difference between the minimum and maximum in the threshold microstructure is reduced, and the frequency that yields the minimum threshold decreases; (2) the threshold at the SOAE frequency is most sensitive to noise exposure; (3) intense stimulation causes a relatively small increase, or even a decrease, in threshold at frequencies near the SOAE. The experimental results are interpreted in terms of a nonlinear transmission line model which includes nonlinear amplifiers. The effect of the noise exposure is modeled by reduction in the cochlear partition amplification term. Most of the experimental results are predicted by this model.  相似文献   

6.
Prevalence of spontaneous otoacoustic emissions in neonates.   总被引:4,自引:0,他引:4  
The prevalence of spontaneous otoacoustic emissions (SOAEs) was measured in a group of 100 neonates and in a group of 50 normal-hearing young adults. The prevalence of SOAEs in the adult group (0.62) is at the high end of the range of prevalences reported in other surveys of adult SOAEs based on measurements using similar microphones. The prevalence of SOAEs in neonates (0.64) is not significantly different from that in adults. The various tendencies that have been found to be significant in the pooled results of other surveys are also evident in our adult group: more SOAEs in right ears, a higher prevalence of SOAEs in females, and a dependence between ears for the occurrence of SOAEs. The above-mentioned tendencies are also significant in the infant data. The major differences between the infant and adult results are the predominant SOAE frequency range and the average levels of SOAEs. The majority of adult SOAEs are between 1.0 and 2.0 kHz, whereas the majority of neonatal SOAEs are between 2.5 and 5.0 kHz. The average SOAE level is -2.6 dB SPL for adults and 8.5 dB SPL for infants.  相似文献   

7.
Mammalian spontaneous otoacoustic emissions (SOAEs) have been suggested to arise by three different mechanisms. The local-oscillator model, dating back to the work of Thomas Gold, supposes that SOAEs arise through the local, autonomous oscillation of some cellular constituent of the organ of Corti (e.g., the "active process" underlying the cochlear amplifier). Two other models, by contrast, both suppose that SOAEs are a global collective phenomenon--cochlear standing waves created by multiple internal reflection--but differ on the nature of the proposed power source: Whereas the "passive" standing-wave model supposes that SOAEs are biological noise, passively amplified by cochlear standing-wave resonances acting as narrow-band nonlinear filters, the "active" standing-wave model supposes that standing-wave amplitudes are actively maintained by coherent wave amplification within the cochlea. Quantitative tests of key predictions that distinguish the local-oscillator and global standing-wave models are presented and shown to support the global standing-wave model. In addition to predicting the existence of multiple emissions with a characteristic minimum frequency spacing, the global standing-wave model accurately predicts the mean value of this spacing, its standard deviation, and its power-law dependence on SOAE frequency. Furthermore, the global standing-wave model accounts for the magnitude, sign, and frequency dependence of changes in SOAE frequency that result from modulations in middle-ear stiffness. Although some of these SOAE characteristics may be replicable through artful ad hoc adjustment of local-oscillator models, they all arise quite naturally in the standing-wave framework. Finally, the statistics of SOAE time waveforms demonstrate that SOAEs are coherent, amplitude-stabilized signals, as predicted by the active standing-wave model. Taken together, the results imply that SOAEs are amplitude-stabilized standing waves produced by the cochlea acting as a biological, hydromechanical analog of a laser oscillator. Contrary to recent claims, spontaneous emission of sound from the ear does not require the autonomous mechanical oscillation of its cellular constituents.  相似文献   

8.
A state space model of the human cochlea is used to test Zweig and Shera's [(1995) "The origin of periodicity in the spectrum of evoked otoacoustic emissions," J. Acoust. Soc. Am. 98(4), 2018-2047 ] multiple-reflection theory of spontaneous otoacoustic emission (SOAE) generation. The state space formulation is especially well suited to this task as the unstable frequencies of an active model can be rapidly and unambiguously determined. The cochlear model includes a human middle ear boundary and matches human enhancement, tuning, and traveling wave characteristics. Linear instabilities can arise across a wide bandwidth of frequencies in the model when the smooth spatial variation of basilar membrane impedance is perturbed, though it is believed that only unstable frequencies near the middle ear's range of greatest transmissibility are detected as SOAEs in the ear canal. The salient features of Zweig and Shera's theory are observed in this active model given several classes of perturbations in the distribution of feedback gain along the cochlea. Spatially random gain variations are used to approximate what may exist in human cochleae. The statistics of the unstable frequencies for random, spatially dense variations in gain are presented; the average spacings of adjacent unstable frequencies agree with the preferred minimum distance observed in human SOAE data.  相似文献   

9.
Previous research has shown that increases in the rate of stimulation on a single electrode yield changes in pitch perception until the rate is increased beyond a given critical rate, after which changes in rate are only perceived as changes in loudness. The critical rate beyond which a rate increase no longer elicits a pitch change in most subjects is approximately 300 Hz, although a small number of subjects have been observed to have critical rates up to approximately 1000 Hz. In this article, we sought to determine if increasing the rate of stimulation beyond the critical rate (up to 12.8 kHz) would eventually result in new changes of perception (other than loudness.) Our data replicate the previously observed results that rates between approximately 300 and 1500 Hz are indistinguishable from each other. However, we observed the finding that a rate of stimulation well above the critical rate (starting between 1500 Hz and 12.8 kHz, depending on electrode and subject) can elicit changes in perception. The perceptual differences between these high rates were sometimes but not always labeled as pitch changes. This phenomenon needs further research to assess its potential relevance to speech perception using high rates of stimulation.  相似文献   

10.
PURPOSE: The purpose of this study was to evaluate the feasibility of using proton and sodium magnetic resonance imaging (MRI) to detect fluid accumulation produced by fludrocortisone and nifedipine - two drugs known to cause salt/water retention by different mechanisms. MATERIALS AND METHODS: Twelve young healthy male subjects were randomly assigned to one of two groups and treated with either fludrocortisone or nifedipine for 14 or 25 days, respectively. The change in sodium MRI, as well as in proton T(2) value and T(1)-weighted signal intensity in the calf following postural change [referred to here as 'postural delta signal'(PDS)], was evaluated before, during and after drug administration. The changes in MRI PDS were compared to conventional physiological parameters, including body weight, calf volume and pitting edema. RESULTS: When compared to the baseline pretreatment values, the subjects treated with fludrocortisone showed a 5.5% increase in sodium MRI PDS (P=.01), a 2-ms increase in proton T(2) PDS of the gastrocnemius muscle (P=.06) and a body weight gain of 2.3% (P=.001) within 1 week. In the nifedipine-treated subjects, the sodium MRI PDS increased by 6% versus baseline (P=.03), while the proton T(2) PDS of the gastrocnemius muscle increased by 3.7 ms (P=.01), associated with a 0.5% weight gain (P=.55), within 3 weeks. No significant changes were noted in the T(1)-weighed images following postural change. Measurements of calf circumference, volume and pitting edema did not show consistent changes associated with the drug administration. CONCLUSION: The postural change in sodium MRI and proton T(2) signals provides a sensitive method for detecting the fluid accumulation produced by fludrocortisone and nifedipine. The MRI results are consistent with treatment-induced increases in extracellular fluid volume and correlate well with the observed weight gain. These findings support the potential utility of MRI for the evaluation of medication-induced fluid retention.  相似文献   

11.
Objective: Many studies have demonstrated that the loss of muscle mass (LMM) poses a risk of postural instability in the elderly; however, few studies have shown how LMM decreases proprioception. In this study, we investigated the changes in postural sway among older individuals with LMM induced by application of a local vibratory stimulus. Method: We enrolled 64 older adults (mean age). Postural sway was measured while applying vibration stimuli of 30, 60, and 240 Hz to both the gastrocnemius and lumbar multifidus muscles. We also measured the relative proprioceptive weighting ratio (RPW) of postural sway. The patients were divided into LMM and non-LMM (NLMM) groups. The study subjects were compared in terms of their age, height, weight, body mass index (BMI), lower leg skeletal muscle mass index (LSMI), L4/5 lumbar multifidus cross-sectional area ratio, and RPW at 30, 60, and 240 Hz. Results: Subjects in the LMM group showed a significantly lower RPW at 60 Hz, LSMI, and BMI than did those in the NLMM group. Conclusions: Decrease in RPW with 60-Hz stimulation concerning the lower leg proprioception is a risk factor for LMM-associated postural instability in the elderly. Consequently, with respect to the gastrocnemius muscles proprioception in LMM, it is necessary to perform assessments using muscle spindle stimuli.  相似文献   

12.
Objective: To examine the changes in postural alignment and kyphosis-correlated factors after 6 months of back extensor strengthening exercise in a group of community-dwelling older adults aged ≥65 years. Methods: We quasi-randomized 29 subjects into an intervention group treated with a back extensor strengthening program and a control group treated with a full-body exercise program. These groups completed 20-30 minutes of exercise directed by a physical therapist one or more times per week and were instructed to exercise at home as well. The participants were assessed prior to and after the intervention using the following criteria: postural alignment of “usual” and “best” posture, physical function, physical performance, self-efficacy, and quality of life. The differences between two factors (group and period) were compared for each of the measurement variables. Results: Subjects who adequately completed the exercises were analyzed. A reduced knee flexion angle was noted in the “best” posture of both groups, as were improved physical function and performance with the exception of one-leg standing time. Verifying the effect size in the post-hoc analysis, the body parts that showed changes to postural alignment after the intervention differed between groups. Conclusions: Back extensor strengthening exercises improved physical function and performance, but did not improve spinal alignment. The changes due to these interventions were not significantly different from changes observed in the full-body exercise group. However, post-hoc analysis revealed that the effect size of posture change was different, possible indicating that the two groups experienced different changes in the postural alignment.  相似文献   

13.

Background  

Although previous studies suggest that postural control requires attention and other cognitive resources, the central mechanisms responsible for this relationship remain unclear. To address this issue, we examined the effects of altered attention on cortical activity and postural responses following mechanical perturbations to upright stance. We hypothesized that cortical activity would be attenuated but not delayed when mechanical perturbations were applied during a concurrent performance of a cognitive task (i.e. when attention was directed away from the perturbation). We also hypothesized that these cortical changes would be accompanied by alterations in the postural response, as evidenced by increases in the magnitude of anteroposterior (AP) centre of pressure (COP) peak displacements and tibialis anterior (TA) muscle activity. Healthy young adults (n = 7) were instructed to continuously track (cognitive task) or not track (control task) a randomly moving visual target using a hand-held joystick. During each of these conditions, unpredictable translations of a moving floor evoked cortical and postural responses. Scalp-recorded cortical activity, COP, and TA electromyographic (EMG) measures were collected.  相似文献   

14.
Seven experiments on the detectability of intensity changes in complex multitonal acoustic spectra are reported. Two general questions organize the experimental efforts. The first question is how the detectability of a change in a flat (equal energy) spectrum depends on the frequency region where a single intensive change is made. The answer is that frequency region plays a relatively minor role. Frequency changes in the midregion of the spectrum are the easiest to hear, but thresholds increase by only about 5 dB over the range from 200 to 5000 Hz. For all frequencies, the psychometric function is of the form d' = k(delta p), where k is a constant and delta p is the change in pressure. The second question is how can we predict the detectability of complex changes over the entire frequency range from the detectability of change at each separate region. Thresholds for detecting a change from a flat spectrum to a spectrum whose amplitude varies in sinusoidal ("rippled") fashion over logarithmic frequency are measured at different frequencies of ripple. The thresholds are found to be independent of ripple frequency and are 7 dB higher than predicted on the basis of an optimum combination rule.  相似文献   

15.
Auditory evoked cortical responses to changes in the interaural phase difference (IPD) were recorded using magnetoencephalography (MEG). Twelve normal-hearing young adults were tested with amplitude-modulated tones with carrier frequencies of 500, 1000, 1250, and 1500 Hz. The onset of the stimuli evoked P1m-N1m-P2m cortical responses, as did the changes in the interaural phase. Significant responses to IPD changes were identified at 500 and 1000 Hz in all subjects and at 1250 Hz in nine subjects, whereas responses were absent in all subjects at 1500 Hz, indicating a group mean threshold for detecting IPDs of 1250 Hz. Behavioral thresholds were found at 1200 Hz using an adaptive two alternative forced choice procedure. Because the physiological responses require phase information, through synchronous bilateral inputs at the level of the auditory brainstem, physiological "change" detection thresholds likely reflect the upper limit of phase synchronous activity in the brainstem. The procedure has potential applications in investigating impaired binaural processing because phase statistic applied to single epoch MEG data allowed individual thresholds to be obtained.  相似文献   

16.
The purpose of this investigation was to study voice changes during a working day. The subjects consisted of 33 female primary and secondary schoolteachers who recorded their first and last lessons during one school day. The subjects were studied both as one group and two subgroups (those with many and those with few voice complaints). Estimates of fundamental frequency (F0), sound pressure level (SPL), the standard deviations of these values (F0 SD; SPL SD) and F0 time (vibration time of vocal folds) were made. The most obvious change due to loading was the rise of F0 that was 9.7 Hz between the first and last lesson (P = 0.00). F0 increased more (12.8. Hz, P = 0.006) in the subgroup with few complaints.  相似文献   

17.
The ability of goldfish to detect a change in the frequency of 400-Hz pure-tone bursts was studied using classical respiratory conditioning. The frequency discrimination threshold was measured at 15-, 35-, and 55-dB sensation level (SL), under conditions of (1) constant intensity, (2) roving intensity (plus and minus 6-dB burst-to-burst variation in intensity), (3) upward frequency change, and (4) downward frequency change. There was no overall effect of SL on frequency discrimination, but roving the intensity elevated thresholds by about 6 Hz (33%) and increased variability. Upward shifts in frequency elevated thresholds slightly (by 2 Hz or 10%) relative to downward shifts. These relatively small and statistically insignificant effects suggest that earlier measures of frequency discrimination in the goldfish are not due to the detection of simple changes in spike rate within individual peripheral channels.  相似文献   

18.
The binaural beat has been used for over 100 years as a stimulus for generating the percept of motion. Classically the beat consists of a pure tone at one ear (e.g., 500 Hz) and the same pure tone at the other ear but shifted upward or downward in frequency (e.g., 501 Hz). An experiment and binaural computational analysis are reported which demonstrate that a more powerful motion percept can be obtained by applying the concept of the frequency shift to a noise, via an upward or downward shift in the frequency of the Fourier components of its spectrum.  相似文献   

19.
The timing of changes in parameters of speech production was investigated in six cochlear implant users by switching their implant microphones off and on a number of times in a single experimental session. The subjects repeated four short, two-word utterances, /dV1n#SV2d/ (S = /s/ or /S/), in quasi-random order. The changes between hearing and nonhearing states were introduced by a voice-activated switch at V1 onset. "Postural" measures were made of vowel sound pressure level (SPL), duration, F0; contrast measures were made of vowel separation (distance between pair members in the formant plane) and sibilant separation (difference in spectral means). Changes in parameter values were averaged over multiple utterances, lined up with respect to the switch. No matter whether prosthetic hearing was blocked or restored, contrast measures for vowels and sibilants did not change systematically. Some changes in duration, SPL and F0 were observed during the vowel within which hearing state was changed, V1, as well as during V2 and subsequent utterance repetitions. Thus, sound segment contrasts appear to be controlled differently from the postural parameters of speaking rate and average SPL and F0. These findings are interpreted in terms of the function of hypothesized feedback and feedforward mechanisms for speech motor control.  相似文献   

20.
The objective of this study was to assess the effect of comprehensive exercise program widely accepted as a community-based physical intervention for the prevention of falling in the elderly persons on their controlling standing balance. Twenty-six community-dwelling elderly persons (13 males and females; 69.8 ± 2.8 years old) participated in this study. Daily exercise was comprised of walking for more than 30 min, stretching, muscle strengthening and balance exercise without exercise equipments. The intervention was continued for three months. Indicators of standing balance related to static balance, dynamic balance and postural response were measured before and after the intervention. As an effect of the intervention on static balance, the sway of center of pressure (COP) in the static stance significantly increased. In the dynamic balance, significant improvements were observed in one leg standing time, the 10-m gait time, functional reach. Additionally, the maximal movable length of COP which subjects can move voluntarily to right and left significantly increased. In the postural response, the integrated electromyography (IEMG) induced by postural response for sudden postural perturbation significantly decreased in the lower leg muscles. Since less muscular activities were sufficient to maintain posture, it was suggested that postural response was elicited more efficiently following the intervention. This study suggested that the comprehensive exercise program, which has been widely introduced as community-based interventions for the prevention of falling, have extensive effects on the control of standing balance covering static balance, dynamic balance and postural response in the elderly persons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号