首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
In the absence of capillarity the single-component two-phase porous medium equations have the structure of a nonlinear parabolic pressure (equivalently, temperature) diffusion equation, with derivative coupling to a nonlinear hyperbolic saturation wave equation. The mixed parabolic-hyperbolic system is capable of substaining saturation shock waves. The Rankine-Hugoniot equations show that the volume flux is continuous across such a shock. In this paper we focus on the horizontal one-dimensional flow of water and steam through a block of porous material within a geothermal reservoir. Starting from a state of steady flow we study the reaction of the system to simple changes in boundary conditions. Exact results are obtainable only numerically, but in some cases analytic approximations can be derived. When pressure diffusion occurs much faster than saturation convection, the numerical results can be described satisfactorily in terms of either saturation expansion fans, or isolated saturation shocks. At early times, pressure and saturation profiles are functionally related. At intermediate times, boundary effects become apparent. At late times, saturation convection dominates and eventually a steady-state is established. When both pressure diffusion and saturation convection occur on the same timescale, initial simple shock profiles evolve into multiple shocks, for which no theory is currently available. Finally, a parameter-free system of equations is obtained which satisfactorily represents a particular case of the exact equations.  相似文献   

2.
The properties of equilibrium steam-water mixture — water(steam) phase transition fronts in porous heat-conducting media are investigated in the one-dimensional formulation. The number of necessary boundary conditions on the front (evolutionarity), the direction of propagation of the front with respect to the porous medium, the type of phase transition (evaporation or condensation), and the thermodynamic contradiction in the zone occupied by the pure phase (water or steam) are determined as functions of the parameters of the medium.Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, 2004, pp. 133–144. Original Russian Text Copyright © 2004 by Kondrashov.  相似文献   

3.
New concepts are introduced to describe single-component two-phase flow under gravity. The phases can flow simultaneously in opposite directions (counterflow), but information travels either up or down, depending on the sign of the wavespeedC. Wavespeed, saturation and other quantities are defined on a two-sheeted surface over the mass-energy flow plane, the sheets overlapping in the counterflow region. A saturation shock is represented as an instantaneous displacement along a line of constant volume fluxJ Q in the flow plane. Most shocks are of the wetting type, that is, they leave the environment more saturated after their passage. When flow is horizontal all shocks are wetting, but it is a feature of vertical two-phase flow that for sufficiently small mass and energy flows there also exist drying shocks associated with lower final saturations.  相似文献   

4.
In this paper, we report the results of our numerical studies on laminar mixed convection heat transfer in a circular Curved tube with a nanofluid consisting of water and 1 vol.% Al2O3. Three dimensional elliptic governing equations have been used. Two phase mixture model and control volume technique have been implemented to study flow field. Effects of the diameter of particles on the hydrodynamic and thermal parameters are investigated and discussed. Increasing the solid particles diameter decreases the Nusselt number and secondary flow, while the axial velocity augments. When the particles are in order of nano meter, increasing the diameter of particles, do not change the flow behaviors. The distribution of solid nanoparticles is uniform and constant in curved tube.  相似文献   

5.
In this paper, we study an interface transport scheme of a two‐phase flow of an incompressible viscous immiscible fluid. The problem is discretized by the characteristics method in time and finite elements method in space. The interface is captured by the level set function. Appropriate boundary conditions for the problem of mold filling are investigated, a new natural boundary condition under pressure effect for the transport equation is proposed, and an algorithm for computing the solution is presented. Finally, numerical experiments show and validate the effectiveness of the proposed scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Consideration is given in this paper to the numerical solution of the transient two‐phase flow in rigid pipelines. The governing equations for such flows are two coupled, non‐linear, hyperbolic, partial differential equations with pressure dependent coefficients. The fluid pressure and velocity are considered as two principle dependent variables. The fluid is a homogeneous gas–liquid mixture for which the density is defined by an expression averaging the two‐component densities where a polytropic process of the gaseous phase is admitted. Instead of the void fraction, which varies with the pressure, the gas–fluid mass ratio (or the quality) is assumed to be constant, and is used in the mathematical formulation. The problem has been solved by the method of non‐linear characteristics and the finite difference conservative scheme. To verify their validity, the computed results of the two numerical techniques are compared for different values of the quality, in the case where the liquid compressibility and the pipe wall elasticity are neglected. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
Current existing main nuclear thermal‐hydraulics (T‐H) system analysis codes, such as RALAP5, TRACE, and CATHARE, play a crucial role in the nuclear engineering field for the design and safety analysis of nuclear reactor systems. However, two‐fluid model used in these T‐H system analysis codes is ill posed, easily leading to numerical oscillations, and the classical first‐order methods for temporal and special discretization are widely employed for numerical simulations, yielding excessive numerical diffusion. Two‐fluid seven‐equation two‐pressure model is of particular interest due to the inherent well‐posed advantage. Moreover, high‐order accuracy schemes have also attracted great attention to overcome the challenge of serious numerical diffusion induced by low‐order time and space schemes for accurately simulating nuclear T‐H problems. In this paper, the semi‐implicit solution algorithm with high‐order accuracy in space and time is developed for this well‐posed two‐fluid model and the robustness and accuracy are verified and assessed against several important two‐phase flow benchmark tests in the nuclear engineering T‐H field, which include two linear advection problems, the oscillation problem of the liquid column, the Ransom water faucet problem, the reversed water faucet problem, and the two‐phase shock tube problem. The following conclusions are achieved. (1) The proposed semi‐implicit solution algorithm is robust in solving two‐phase flows, even for fast transients and discontinuous solutions. (2) High‐order schemes in both time and space could prevent excessive numerical diffusion effectively and the numerical simulation results are more accurate than those of first‐order time and space schemes, which demonstrates the advantage of using high‐order schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号