首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Self-assembled monolayers (SAMs) of octanethiol and benzeneethanethiol were deposited on clean Pt(111) surfaces in ultrahigh vacuum (UHV). Highly resolved images of these SAMs produced by an in situ scanning tunneling microscope (STM) showed that both systems organize into a super-structure mosaic of domains of locally ordered, closely packed molecules. Analysis of the STM images indicated a (square root 3 x square root 3)R30 degrees unit cell for the octanethiol SAMs and a 4(square root 3 x square root 3)R30 degrees periodicity based on 2 x 2 basic molecular packing for the benzeneethanethiol SAMs under the coverage conditions investigated. SAMs on Pt(111) exhibited differences in molecular packing and a lower density of disordered regions than SAMs on Au(111). Electron transport measurements were performed using scanning tunneling spectroscopy. Benzeneethanethiol/Pt(111) junctions exhibited a higher conductance than octanethiol/Pt(111) junctions.  相似文献   

2.
Self-assembled monolayers (SAMs) formed from bis(biphenyl-4-yl) diselenide (BBPDSe) on Au(111) and Ag(111) substrates have been characterized by high-resolution X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, infrared reflection absorption spectroscopy, water contact angle measurements, and scanning tunneling microscopy (STM). BBPDSe was found to form contamination-free, densely packed, and well-ordered biphenyl selenolate (BPSe) SAMs on both Au and Ag. Spectroscopic data suggest very similar packing density, orientational order, and molecular inclination in BPSe/Au and BPSe/Ag. STM data give a similar intermolecular spacing of 5.3 +/- 0.4 A on both Au and Ag but exhibit differences in the exact arrangement of the BPSe molecules on these two substrates, with the (2 square root[3] x square root[3])R30 degrees and (square root[3] x square root[3])R30 degrees unit cells on Au and Ag, respectively. There is strong evidence for adsorbate-mediated substrate restructuring in the case of Au, whereas no clear statement on this issue can be made in the case of Ag. The film quality of the BPSe SAMs is superior to their thiol analogues, which is presumably related to a better ability of the selenolates to adjust the surface lattice of the substrate to the most favorable 2D arrangement of the adsorbate molecules. This suggests that aromatic selenolates represent an attractive alternative to the respective thiols.  相似文献   

3.
We report the first scanning tunneling microscope (STM) investigation, combined with density functional theory calculations, to resolve controversy regarding the bonding and structure of chlorine adsorbed on Au(111). STM experiments are carried out at 120 K to overcome instability caused by mobile species upon chlorine adsorption at room temperature. Chlorine adsorption initially lifts the herringbone reconstruction. At low coverages (<0.33 ML), chlorine binds to the top of Au(111)-(1 x 1) surface and leads to formation of an overlayer with (square root(3) x square root(3))R30 degree structure at 0.33 ML. At higher coverages, packing chlorine into an overlayer structure is no longer favored. Gold atoms incorporate into a complex superlattice of a Au-Cl surface compound.  相似文献   

4.
Nonionic Fluorosurfactant Zonyl FSN self-assembly on Au(111) is investigated with scanning tunneling microscopy under ambient conditions. STM reveals that the FSN forms SAMs on Au(l11) with very large domain size and almost no defects. A (mean square root of 3 x mean square root of 3)R3 degree arrangement of the FSN SAM on Au(111) is observed. The SAMs show excellent chemical stability and last for at least a month in atmospheric conditions. The structure and stability of the FSN SAMs are compared with those of alkanethiols SAMs. It is expected that FSN may serve as a new kind of molecule to form SAMs for surface modification, which would benefit wider applications for various purposes.  相似文献   

5.
Scanning tunneling microscopy (STM) and low-energy electron diffraction were used to reveal the structures of ordered adlayers of [2+2]-type C60-C60 fullerene dimer (C120) and C60-C70 cross-dimer (C130) formed on Au(111) by immersingit in abenzene solution containing C120 or C130 molecules. High-resolution STM images clearly showed the packing arrangements and the electronic structures of C120 and C130 on the Au(111) surface in ultrahigh vacuum. The (2 square root3 x 4square root3)R30 degrees, (2square root3 x 5square root3)R30 degrees, and (7 x 7) structures were found for the C120 adlayer on the Au(111) surface, whereas C130 molecules were closely packed on the surface. Each C60 or C70 monomer cage was discerned in the STM image of a C130 molecule.  相似文献   

6.
The structure of aldehyde-terminated alkanethiol self-assembled monolayers (SAMs) on Au(111) is investigated using scanning tunneling microscopy (STM), atomic force microscopy (AFM), and density functional theory (DFT) calculations. For the first time, the structures of aldehyde-terminated SAMs are revealed with molecular resolution. SAMs of 11-mercapto-1-undecanal exhibit the basic (radical3xradical3)R30 degrees periodicity and form various c(4x2) superstructures upon annealing. In conjunction with DFT studies, the models of the (radical3xradical3)R30 degrees and the c(4x2) superstructures are constructed. In comparison with alkanethiol SAMs, the introduction of aldehyde-termini results in smaller domain size, lower degree of long-range order, large coverage of disordered areas, and higher density of missing molecules and other point defects within domains of closely packed molecules. The origin of these structural differences is mainly attributed to the strong dipole-dipole interactions among the aldehyde termini.  相似文献   

7.
Self-assembled monolayers (SAMs) of two omega-(4'-methylbiphenyl-4-yl)alkanethiols (CH(3)(C(6)H(4))(2)(CH(2))(n)SH, BPn, n = 4, 6) on Au(111) substrates, prepared from solution at room temperature and subsequently annealed at temperatures up to 493 K under a nitrogen atmosphere, were studied using scanning tunneling microscopy (STM), high-resolution X-ray photoelectron spectroscopy (HRXPS), and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). In striking contrast to BPn SAMs with n = odd, for which only one phase is observed, the even-numbered BPn SAMs exhibit polymorphism. Irreversible phase transitions occur which involve three phases differing substantially in density and stability. Upon annealing, BP4 and BP6 transform into a beta-phase, which is characterized by an exceptionally high structural quality with virtually defect-free domains exceeding 500 nm in diameter. Exchange experiments, monitored by contact angle measurement, reveal that the beta-phase exhibits a dramatically improved stability. The fundamental differences in the phase behavior of even- and odd-numbered BPn SAMs are discussed in terms of two design strategies based on cooperative and competitive effects.  相似文献   

8.
The tert-butanethiol self-assembled monolayers (SAMs) on Au(111) surfaces were prepared from various solvents and investigated by a combination of scanning tunneling microscopy (STM) and electrochemistry in aqueous environments. High-resolution STM images reveal a (radical(7) x radical(7))R19 degrees surface lattice structure, in contrast with the conventional lattice (radical(3) x radical(3))R30 degrees structure for straight-chain alkanethiol SAMs. Interestingly, such a branched monolayer shows electrochemical rectification toward redox probes. We suggest that electrochemical rectification could be a general characteristic of short-chain branched alkanthiol SAMs, and originate in localized electronic effects.  相似文献   

9.
Scanning tunneling microscopy (STM) and high-resolution electron energy loss spectroscopy (HREELS) were used to examine the structural transitions and interface dynamics of octanethiol (OT) self-assembled monolayers (SAMs) caused by long-term storage or annealing at an elevated temperature. We found that the structural transitions of OT SAMs from the c(4 x 2) superlattice to the (6 x square root 3) superlattice resulting from long-term storage were caused by both the dynamic movement of the adsorbed sulfur atoms on several adsorption sites of the Au(111) surface and the change of molecular orientation in the ordered layer. Moreover, it was found that the chemical structure of the sulfur headgroups does not change from monomer to dimer by the temporal change of SAMs at room temperature. Contrary to the results of the long-term-stored SAMs, it was found that the annealing process did not modify either the interfacial or chemical structures of the sulfur headgroups or the two-dimensional c(4 x 2) domain structure. Our results will be very useful for a better understanding of the interface dynamics and stability of sulfur atoms in alkanethiol SAMs on Au(111) surfaces.  相似文献   

10.
A self-assembled monolayer of dodecanethiol is grown onto (111) oriented gold by vacuum phase deposition and studied by ultrahigh vacuum scanning tunneling microscopy (STM). The films consist of domains that exhibit the c(4 x 2) over-structure of the hexagonal (square root of 3 x square root of 3)R30 of alkanethiols on gold. The domain size is only limited by the terrace size of the underlying gold. By higher resolution scans a new phase of the c(4 x 2) structure consisting of four inequivalent molecules that display different heights in the STM images is discovered.  相似文献   

11.
Template stripping of Au films in ultrahigh vacuum (UHV) produces atomically flat and pristine surfaces that serve as substrates for highly ordered self-assembled monolayer (SAM) formation. Atomic resolution scanning tunneling microscopy of template-stripped (TS) Au stripped in UHV confirms that the stripping process produces a flat, predominantly 111 textured, atomically clean surface. Octanethiol SAMs vapor deposited in situ onto UHV TS Au show a c(4 x 2) superlattice with (square root 3 x square root 3) R30 degrees basic molecular structure having an ordered domain size up to 100 nm wide. These UHV results validate the TS Au surface as a simple, clean and high-quality surface preparation method for SAMs deposited from both vapor phase and solution phase.  相似文献   

12.
Self-assembled monolayers (SAMs) formed from 4,4'-terphenyl-substituted alkanethiols C6H5(C6H4)2-(CH2)nSH (TPn, n = 1-6) on polycrystalline (111) gold and silver substrates have been characterized by synchrotron-based high-resolution X-ray photoelectron spectroscopy. The intensities, binding energy positions, and width of most photoemission lines exhibited pronounced odd-even effects, i.e., systematic and periodic variation, depending on either odd or even number of the methylene units in the aliphatic linker of the TPn molecules. The detailed analysis of these effects provides important information on the bonding and arrangement of the chemisorbed sulfur headgroups in the TPn films and balance of the structural forces in alkanethiolate SAMs.  相似文献   

13.
In situ scanning tunneling microscopy (STM) was used to examine the spatial structures of n-alkane thiols (1-hexanethiol, 1-nonanethiol, and 1-octahexanethiol) and arylthiols (benzenethiol and 4-hydroxybenzenethiol) adsorbed on well-ordered Pt111 electrodes in 0.1 M HClO4. The electrochemical potential and molecular flux were found to be the dominant factors in determining the growth mechanisms, final coverages, and spatial structures of these organic adlayers. Depending on the concentrations of the thiols, deposition of self-assembled monolayers (SAMs) followed either the nucleation-and-growth mechanism or the random fill-in mechanism. Low and high thiol concentrations respectively produced two ordered structures, (2 x 2) and (square root of 3 x square root of 3)R30 degrees , between 0.05 and 0.3 V. On average, an ordered domain spanned 500 A when the SAMs were made at 0.15 V, but this dimension shrank substantially once the potential was raised above 0.3 V. This potential-induced order-to-disorder phase transition resulted from a continuous deposition of thiols, preferentially at domain boundaries of (square root of 3 x square root of 3 x )R30 degrees arrays. All molecular adlayers were completely disordered by 0.6 V, and this restructuring event was irreversible with potential modulation. Since all thiols were arranged in a manner similar to that adopted by sulfur adatoms (Sung et al. J. Am. Chem. Soc. 1997, 119, 194), it is likely that they were adsorbed mainly through their sulfur headgroups in a tilted configuration, irrespective of the coverage. Both the sulfur and phenyl groups of benzenethiol admolecules gave rise to features with different corrugation heights in the molecular-resolution STM images. All thiols were adsorbed strongly enough that they remained intact at a potential as negative as -1.0 V in 0.1 M KOH.  相似文献   

14.
In situ scanning tunneling microscopy (STM) and cyclic voltammetry (CV) were employed to examine the underpotential deposition (UPD) of cadmium on a rhodium(111) electrode in sulfuric and hydrochloric acids. The (bi)sulfate and chloride anions in the electrolytes played a main role in controlling the number and arrangement of Cd adatoms. Deposition of Cd along with hydrogen adsorption occurred near 0.1 V (vs reversible hydrogen electrode) in either 0.05 M H2SO4 or 0.1 M HCl containing 1 mM Cd(ClO4)2. These coupled processes resulted in an erroneous coverage of Cd adatoms. The process of Cd deposition shifted positively to 0.3 V and thus separated from that of hydrogen in 0.05 M H2SO4 containing 0.5 M Cd2+. The amount of charge (80 microC/cm2) for Cd deposition in 0.5 M Cd2+ implied a coverage of 0.17 for the Cd adatoms, which agreed with in situ STM results. Regardless of [Cd2+], in situ STM imaging revealed a highly ordered Rh(111)-(6 x 6)-6Cd + HSO4- or SO42- structure in sulfuric acid,. In hydrochloric acid, in situ STM discerned a (2 x 2)-Cd + Cl structure at potentials where Cd deposition commenced. STM atomic resolution showed roughly one-quarter of a monolayer of Cd adatoms were deposited, ca. 50% more than in sulfuric acid. Dynamic in situ STM imaging showed potential dependent, reversible transformations between the (6 x 6) Cd adlattices and (square root 3 x square root 7)-(bi)sulfate structure, and between (2 x 2) and (square root 7 x square root 7)R19.1 degrees -Cl structures. The fact that different Cd structures observed in H2SO4 and HCl entailed the involvement of anions in Cd deposition, i.e. (bi)sulfate and chloride anions were codeposited with Cd adatoms on Rh(111).  相似文献   

15.
This work presents an electrochemical scanning tunneling microscopy study of Sb irreversibly adsorbed on Pt(111) at various potentials. At an open circuit potential (0.46 V vs a Ag/AgCl electrode), well-ordered structures of SbO+ were found: four (4 x 3)-3SbO+ structures and one (2 square root(3) x 2 square root(3))R30 degrees-3SbO+ structure. In addition, several unidentifiable transient structures of SbO+ were observed, and their relations to the well-ordered structures of (4 x 3) and (2 square root(3) x 2 square root(3))R30 degrees, regarding structural evolution, were proposed. At a reducing potential (0 V), the Pt(111) surface was covered with irreversibly adsorbed Sb which consisted of three different domains: protruded domain, domain of uniaxially incommensurate (square root(3) x square root(2))-Sb, and domain of bare (1 x 1) Pt(111). During oxidation of elemental Sb at 0.30 V, the Sb domains of the (square root(3) x square root(2)) structure were oxidized, while the protruded domains were not oxidized. After underpotential deposition of additional Sb onto the Pt(111) covered with irreversibly adsorbed Sb, the whole surface was filled with the Sb domains where each Sb atoms were separated by the square root(2a) distance (a = one Pt-Pt distance, 0.277 nm). The observed electrochemical inactivity below 0.3 V was discussed in terms of the protruded domain of a presumable incommensurate (square root(2) x square root(2)) structure.  相似文献   

16.
The surface structure of dodecanethiolate self-assembled monolayers (SAMs) on Au(111) surfaces, formed from the liquid phase, have been studied by grazing incidence X-ray diffraction (GIXRD), scanning tunneling microscopy (STM), and electrochemical techniques. STM images show that the surface structure consists of (square root 3 x square root 3)-R30 degrees domains with only a few domains of the c(4 x 2) lattice. The best fitting of GIXRD data for the (square root 3 x square root 3)-R30 degrees lattice is obtained with alkanethiolate adsorption at the top sites, although good fittings are also obtained for the fcc and hcp hollow sites. On the basis of this observation, STM data, electrochemical measurements, and previously reported data, we propose a two-site model that implies the formation of incoherent domains of alkanethiolate molecules at top and fcc hollow sites. This model largely improves the fitting of the GIXRD data with respect to those observed for single adsorption sites and, also, for the other possible two-site combinations. The presence of alkanethiolate molecules adsorbed at the less favorable top sites could result from the adsorption pathway that involves an initial physisorption step which, for steric reasons, takes place at on top sites. Once the molecules are chemisorbed, the presence of energy barriers for alkanethiolate surface diffusion, arising mostly from chain-chain interactions, "freezes" some of them at the on top sites, hindering their movement toward fcc hollow sites. By considering the length of the hydrocarbon chain and the adsorption time, the two-site model could be a tool to explain most of the controversial results on this matter reported in the literature.  相似文献   

17.
In situ scanning tunneling microscopy images of self-assembled monolayers (SAMs) of 4-mercaptopyridine (4-MPy) on Au(111) recorded in neat 0.1 M H2SO4 solutions provided evidence for a potential-induced phase transition over the range 0.40-0.15 V versus saturated calomel electrode. Analysis of the data was consistent with the presence of a (5 x square root(3)) and (10 x square root(3)) superstructure (phase A) at the positive end, that is, 0.40 V, for which the local coverage, theta(loc), is about 0.2 (two 4-MPy molecules per unit cell), which compresses at the negative end, that is, 0.15 V, to yield a much denser superstructure (phase B, theta(loc) ca. 0.5). This behavior is unlike that reported for the 4-MPy-Au(111) SAM prepared by identical means, in 0.1 M HClO4 (or in sulfate solutions of a much higher pH) for which only the (5 x square root(3)) superstructure was observed over the same potential range. The compression associated with the phase A to phase B transition is attributed to the formation of a hydrogen-bonded network of bisulfate coordinated in turn to the 4-MPy layer via the acidic hydrogens of the pyridinium moieties. Such conditions promote better packing of adsorbed 4-MPy species, which are aided by intermolecular pi-pi ring interactions, resulting in higher local coverages.  相似文献   

18.
We studied the mechanism of CO oxidation on O-precovered Pd(111) surfaces by means of fast x-ray photoelectron spectroscopy (XPS). The oxygen overlayer is compressed upon CO coadsorption from a p(2 x 2) structure into a (square root(3) x square root(3))R30 degrees structure and then into a p(2 x 1) structure with increasing CO coverage. These three O phases exhibit distinctly different reactivities. (1) The p(2 x 2) phase does not react with CO unless the surface temperature is sufficiently high (<290 K). (2) In the square root(3) x square root(3))R30 degrees phase, the reaction occurs exclusively at island peripheries. CO molecules in a high-density phase formed under CO exposure react with oxygen atoms, leading to quite a small apparent activation energy. (3) The reaction proceeds uniformly over the islands in the p(2 x 1) phase.  相似文献   

19.
Underpotential deposition (UPD) of Ag on Au(111) has been studied with two different electrolytes: aqueous 0.1 M H2SO4 solution in comparison with the ionic liquid 1-butyl-3-methylimidazolium chloride BMICl + AlCl3. Of particular interest is the distinct behavior of 2D phase formation at both interfaces, which has been investigated by cyclic and linear sweep voltammetry in combination with in situ electrochemical scanning tunneling microscopy (STM). It is found that one monolayer (ML) of Ag is formed in the UPD region in both electrolytes. In aqueous solution, atomically resolved STM images at 500 mV versus Ag/Ag+ show a (3 x 3) adlayer of Ag, whereas after sweeping the potential just before the commencement of the bulk Ag deposition, a transition from expanded (3 x 3) to pseudomorphic ML of Ag on Au(111) occurs. In BMICl-AlCl3, the first UPD process of Ag exhibits two peaks at 410 and 230 mV indicating that two distinct processes on the surface take place. For the first time, STM images with atomic resolution reveal a transition from an inhomogeneous to an ordered phase with a (square root of 3 x square root of 3)R30 degrees structure and an adsorption of AlCl4- anions having a superlattice of (1.65 x square root of 3)R30 degrees preceding the deposition of Ag.  相似文献   

20.
The growth of Pt nanofilms on well-defined Au(111) electrode surfaces, using electrochemical atomic layer epitaxy (EC-ALE), is described here. EC-ALE is a deposition method based on surface-limited reactions. This report describes the first use of surface-limited redox replacement reactions (SLR(3)) in an EC-ALE cycle to form atomically ordered metal nanofilms. The SLR(3) consisted of the underpotential deposition (UPD) of a copper atomic layer, subsequently replaced by Pt at open circuit, in a Pt cation solution. This SLR(3) was then used a cycle, repeated to grow thicker Pt films. Deposits were studied using a combination of electrochemistry (EC), in-situ scanning tunneling microscopy (STM) using an electrochemical flow cell, and ultrahigh vacuum (UHV) surface studies combined with electrochemistry (UHV-EC). A single redox replacement of upd Cu from a PtCl(4)(2-) solution yielded an incomplete monolayer, though no preferential deposition was observed at step edges. Use of an iodine adlayer, as a surfactant, facilitated the growth of uniformed films. In-situ STM images revealed ordered Au(111)-(square root 3 x square root 3)R30 degrees-iodine structure, with areas partially distorted by Pt nanoislands. After the second application, an ordered Moiré pattern was observed with a spacing consistent with the lattice mismatch between a Pt monolayer and the Au(111) substrate. After application of three or more cycles, a new adlattice, a (3 x 3)-iodine structure, was observed, previously observed for I atoms adsorbed on Pt(111). In addition, five atom adsorbed Pt-I complexes randomly decorated the surface and showed some mobility. These pinwheels, planar PtI(4) complexes, and the ordered (3 x 3)-iodine layer all appeared stable during rinsing with blank solution, free of I(-) and the Pt complex (PtCl(4)(2-)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号