首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the objective of determining the kinetic behavior (growth, substrate, pH, and carotenoid production) and obtain the stoichiometric parameters of the fermentative process by Sporidiobolus salmonicolor in synthetic and agroindustrial media, fermentations were carried out in shaken flasks at 25°C, 180 rpm, and initial pH of 4.0 for 120 h in the dark, sampling every 6 h. The maximum concentrations of total carotenoids in synthetic (913 μg/L) and agroindustrial (502 μg/L) media were attained approximately 100 h after the start of the fermentative process. Carotenoid bioproduction is associated with cell growth and the ratio between carotenoid production and cell growth (Y P/X) is 176 and 163 μg/g in the synthetic and agroindustrial media, respectively. The pH of the agroindustrial fermentation medium varied from 4.2 to 8.5 during the fermentation. The specific growth rate (μ X) for S. salmonicolor in synthetic and agroindustrial media was 0.07 and 0.04 h−1, respectively. The synthetic medium allowed for greater productivity, obtaining maximum cell productivity (P x) of 0.08 g L−1 h−1 and maximum total carotenoid productivity (P car) of 14.2 μg L−1 h−1. Knowledge of the kinetics of a fermentative process is of extreme importance when transposing a laboratory experiment to an industrial scale, as well as making a quantitative comparison between different culture conditions.  相似文献   

2.
Colour and COD removals of the azo dyes Congo Red (CR) and Reactive Black 5 (RB5) were individually evaluated in a sequential anaerobic/aerobic treatment system. Additionally, dye toxicity was assessed by using acute ecotoxicity tests with Daphnia magna as the indicator-organism. The anaerobic reactor was operated at approximately 27 °C and with hydraulic retention times of 12 and 24 h. The aerobic reactor was operated in batch mode with a total cycle of 24 h. During anaerobic step, high colour removals were obtained, 96.3% for CR (400 mg/L) and 75% for RB5 (200 mg/L). During the aerobic phase, COD effluent was considerably reduced, with an average removal efficiency of 52% for CR and 85% for RB5, which resulted in an overall COD removal of 88% for both dyes. Ecotoxicity tests with CR revealed that the anaerobic effluent presented a higher toxicity compared with the influent, and an aerobic post-treatment was not efficient in reducing toxicity. However, the results with RB5 showed that both anaerobic and aerobic steps could decrease dye toxicity, especially the aerobic phase, which removed completely the toxicity in D. magna. Therefore, the anaerobic/aerobic treatment is not always effective in detoxifying dye-containing wastewaters, sometimes even increasing dye toxicity.  相似文献   

3.
The present study, based on a previous batch-wise experiment, investigated a lab-scale semi-continuous cultivation of green microalgae Chlorella vulgaris (UTEX 2714), as a useful means for nutrient reduction as well as production of algal biomass which can be used as potential feedstock for the production of biofuel and other commodities, on 20× diluted dairy manures. Both undigested and digested samples were applied in parallel experiments for comparison regarding the requirements of hydraulic retention times (HRTs), removal efficiencies of nitrogen, phosphorus, and chemical oxygen demand (COD), biomass productivities, and CO2 sequestration abilities. It was demonstrated that algae grown in undigested dairy manure achieved removal rates of 99.7%, 89.5%, 92.0%, and 75.5% for NH4+–N, TN, TP, and COD, respectively, under a 5-day HRT, while the HRT had to extend to 20 days in order to achieve 100.0% removal of NH4+–N in digested one with simultaneous removals of 93.6% of TN, 89.2% of TP, and 55.4% of COD. The higher organic carbon contained in undigested dairy manure helped boost the growth of mixotrophic Chlorella, thus resulting in a much shorter HRT needed for complete removal of NH4+–N. Moreover, algae grown in digested dairy manure provided more penitential than those grown in undigested one in CO2 sequestration per milligram of harvested dried biomass (1.68 mg CO2/mg dry weight (DW) vs 0.99 mg CO2/mg DW), but did not surpass in total the amount of CO2 sequestered on a 15-day period basis because of the better productivity gained in undigested dairy manure.  相似文献   

4.

This study was conducted to evaluate the co-culture ability of two yeast (Sarocladium sp. and Cryptococcus sp.) isolates as compared to their individual cultures in surfactant production and oil degradation. The results showed that individual culture of each strain was capable of producing surfactant, degrading oil, and pyrene; also, a synergistic effect was observed when a co-culture was applied. Oil removal and biomass production were 28 and 35% higher in the co-culture than in individual cultures, respectively. To investigate the synergistic effects of mix culture on oil degradation, the surface tension, emulsification activity (EA), and cell surface hydrophobicity of individual and co-culture were studied. A comparison between the produced biosurfactant and chemical surfactants showed that individual culture of each yeast strain could reduce the surface tension like SDS and about 10% better than Tween 80. The results showed that the microbial consortium could reduce the surface tension more, by 10 and 20%, than SDS and Tween 80, respectively. Both individual cultures of Sarocladium sp. and Cryptococcus sp. showed good emulsification activity (0.329 and 0.412, respectively) when compared with a non-inoculated medium. Emulsification activity measurement for the two yeast mix cultures showed an excellent 33 and 67% increase as compared to the individual culture of Sarocladium sp. and Cryptococcus sp., respectively. The cell surface hydrophobicity of Sarocladium sp. and Cryptococcus sp. increased (38 and 85%) when the cells were treated with pyrene as a hydrophobic substrate for four generations. Finally, a 40% increase for pyrene degradation was measured in a co-culture of the two yeast mix culture. According to the results of the present study, the co-culture system exhibited better performance and this study will enhance the understanding of the synergistic effects of yeast co-culture on oil degradation.

  相似文献   

5.
The presence of high strength fats and oils in dairy industry wastewaters poses serious challenges for biological treatment systems, and, therefore, its pretreatment is necessary in order to remove them. In the present study, synthetic dairy wastewater prepared in the laboratory was pretreated using the sophorolipid-producing yeast Candida bombicola in a laboratory-scale bioreactor under batch, fed-batch, and continuous modes of operation. To support the yeast growth, the wastewater was supplemented with sugarcane molasses (1% w/v) and yeast extract (0.1% w/v). Results from the batch operated fermentor revealed complete utilization of fats present in the wastewater within 96 h with more than 93% COD removal efficiency. The yeast was, however, able to pretreat the wastewater more quickly and efficiently under fed-batch mode of operation than under batch operated condition in the same fermentor. Continuous experiments were carried out with a wastewater retention time of 28 h in the reactor; results showed very good performance of the system in complete utilization of fats and COD removal efficiency of more than 90%. The study proved the excellent potential of the biosurfactant-producing yeast in pretreating high-fat- and oil-containing dairy industry wastewater.  相似文献   

6.
Food waste and municipal wastewater are promising feedstocks for microbial lipid biofuel production, and corresponding production process is to be developed. In this study, different oleaginous yeast strains were tested to grow in hydrolyzed food waste, and growths of Cryptococcus curvatus, Yarrowia lipolytica, and Rhodotorula glutinis in this condition were at same level as in glucose culture as control. These strains were further tested to grow in municipal primary wastewater. C. curvatus and R. glutinis had higher production than Y. lipolytica in media made from primary wastewater, both with and without glucose supplemented. Finally, a process was tested to grow C. curvatus and R. glutinis in media made from food waste and municipal wastewater, and the effluents from these processes were further treated with yeast culture and phototrophic algae culture; 1.1 g/L C. curvatus and 1.5 g/L R. glutinis biomass were further produced in second-step yeast cultures, as well as 1.53 and 0.58 g/L Chlorella sorokiniana biomass in phototrophic cultures. The residual nitrogen concentrations in final effluents were 33 mg/L and 34 mg/L, respectively, and the residual phosphorus concentrations were 1.5 and 0.6 mg/L, respectively. The lipid contents in the produced biomass were from 18.7% to 28.6%.  相似文献   

7.

Photosynthetic mitigation of CO2 through microalgae is gaining great importance due to its higher photosynthetic ability compared to plants, and the biomass can be commercially exploited for various applications. CO2 fixation capability of the newly isolated freshwater microalgae Scenedesmus bajacalifornicus BBKLP-07 was investigated using a 1-l photobioreactor. The cultivation was carried at varying concentration of CO2 ranging from 5 to 25%, and the temperature and light intensities were kept constant. A maximum CO2 fixation rate was observed at 15% CO2 concentration. Characteristic growth parameters such as biomass productivity, specific growth rate, and maximum biomass yield, and biochemical parameters such as carbohydrate, protein, lipid, chlorophyll, and carotenoid were determined and discussed. It was observed that the effect of CO2 concentration on growth and biochemical composition was quite significant. The maximum biomass productivity was 0.061 ± 0.0007 g/l/day, and the rate of CO2 fixation was 0.12 ± 0.002 g/l/day at 15% CO2 concentration. The carbohydrate and lipid content were maximum at 25% CO2 with 26.19 and 25.81% dry cell weight whereas protein, chlorophyll, and carotenoid contents were 32.89% dry cell weight, 25.07 μg/ml and 6.15 μg/ml respectively at 15% CO2 concentration.

  相似文献   

8.
Effect of various abiotic (methyl jasmonate, salicylic acid) and biotic (yeast extract, Aspergillus niger) elicitors on furanocoumarin production and in situ product removal was studied using shoot cultures of Ruta graveolens L. Elicitation by yeast extract (1% w/v) on day 15 was most effective. It led to 7.8-fold higher furanocoumarin production that was attained 24 h after elicitation and 43% of the product was released into the medium. Changes in the relative concentration of furanocoumarins produced depend on the elicitor used. Molar ratio of bergapten increased to 93% in response to yeast extract. With the perspective of developing a commercially feasible process, an approach for preserving viability of biomass and its reuse needs to be developed. For this, medium renewal strategy was investigated. Removal of the spent medium 48 h after elicitation allowed in situ product removal and proved effective in revival of cultures, allowing reuse of biomass. A week after medium renewal, the revived biomass was re-elicited and a second furanocoumarin production peak was obtained. A perfusion-based bioprocess optimization approach, employing elicitation coupled with medium renewal with subsequent re-elicitation, as a new strategy for improved furanocoumarin production, has been suggested.  相似文献   

9.
A photocatalytic reactor with UV/TiO2 was used for the posttreatment of olive mill wastewater after anaerobic digestion. A factorial experimental design was adopted to determine the statistical significance of each parameter tested, namely, initial chemical oxygen demand (COD), pH, treatment time and recirculation flow and possible interactions in three response variables: phenols, color and COD removals. Removal efficiencies of 90.8 ± 2.7%, 79.3 ± 1.9% and 50.3 ± 6.3% were obtained for total phenols (TPh), color and COD respectively. TPh and color were almost completely removed after 24 h of treatment, while the COD removal was partial. Because increasing the treatment time is economically unfeasible a recirculation to the anaerobic reactor should be considered. Regarding the most significant variables, the TPh removal efficiency is dependent of the initial COD concentration; the color removal efficiency decreased with increasing COD concentration and pH; and, the COD removal efficiency is directly linked with the treatment time. The interaction between the initial COD and treatment time affect negatively the response variables tested because of the inactivation of some active sites of the TiO2 paper.  相似文献   

10.
Seven Escherichia coli strains, which were metabolically engineered with carotenoid biosynthetic pathways, were systematically compared in order to investigate the strain-specific formation of carotenoids of structural diversity. C30 acyclic carotenoids, diaponeurosporene and diapolycopene were well produced in all E. coli strains tested. However, the C30 monocyclic diapotorulene formation was strongly strain dependent. Reduced diapotorulene formation was observed in the E. coli strain Top10, MG1655, and MDS42 while better formation was observed in the E. coli strain JM109, SURE, DH5a, and XL1-Blue. Interestingly, C40 carotenoids, which have longer backbones than C30 carotenoids, also showed strain dependency as C30 diapotorulene did. Quantitative analysis showed that the SURE strain was the best producer for C40 acyclic lycopene, C40 dicyclic β-carotene, and C30 monocyclic diapotorulene. Of the seven strains examined, the highest volumetric productivity for most of the carotenoids structures was observed in the recombinant SURE strain. In conclusion, we showed that recombinant hosts and carotenoid structures influenced carotenoid productions significantly, and this information can serve as the basis for the subsequent development of microorganisms for carotenoids of interest.  相似文献   

11.
Mineralization of Reactive Brilliant Red X-3B by a combined anaerobic–aerobic process which was inoculated with the co-culture of Penicillium sp. QQ and Exiguobacterium sp. TL was studied. The optimal conditions of decolorization were investigated by response surface methodology as follows: 132.67 g/L of strain QQ wet spores, 1.09 g/L of strain TL wet cells, 2.25 g/L of glucose, 2.10 g/L of yeast extract, the initial dye concentration of 235.14 mg/L, pH 6.5, and 33 °C. The maximal decolorization rate was about 96 % within 12 h under the above conditions. According to the Haldane kinetic equation, the maximal specific decolorization rate was 89.629 mg/g˙h. It was suggested that in the anaerobic–aerobic combined process, decolorization occurred in the anaerobic unit and chemical oxygen demand (COD) was mainly removed in the aerobic one. Inoculation of fungus QQ in the anaerobic unit was important for mineralization of X-3B. Besides, the divided anaerobic–aerobic process showed better performance of COD removal than the integrated one. It was suggested that the combined anaerobic–aerobic process which was inoculated with co-culture was potentially useful for the field application.  相似文献   

12.
This study attempted to enhance biomass and lipid productivity of an oleaginous yeast Trichosporonoides spathulata by co-culturing with microalgae Chlorella spp., optimizing culture conditions, and encapsulating them in alginate gel beads. The co-culture of the yeast with microalgae Chlorella vulgaris var. vulgaris TISTR 8261 most enhanced overall biomass and lipid productivity by 1.6-fold of the yeast pure culture at 48 h and by 1.1-fold at 72 h. After optimization and scale-up in a bioreactor, this co-culture produced the highest biomass of 12.2 g/L with a high lipid content of 47 %. The dissolved oxygen monitoring system in the bioreactor showed that the microalgae worked well as an oxygen supplier to the yeast. This study also showed that the co-encapsulated yeast and microalgae could grow and produce lipid as same as their free cells did. Therefore, it is possible to apply this encapsulation technique for lipid production and simplification of downstream harvesting process. This co-culture system also produced the lipid with high content of saturated fatty acids, indicating its potential use as biodiesel feedstock with high oxidative stability.  相似文献   

13.

A multiparameter fiber optic biosensor for continuous determination of cholesterol and glucose was developed. This sensor was based on poly(N-isopropylacrylamide) (PNIPAAm)-immobilized glucose oxidase (GOx) complex (PIGC) and immobilized cholesterol oxidase (COD). The immobilized COD catalysis to the oxidation of cholesterol and PIGC catalysis to the oxidation of glucose could be performed at different temperatures. Therefore, the sensor could detect cholesterol and glucose continuously by changing temperature. The optimal detection conditions for glucose were achieved with pH 6.5, 30 °C, and 10 mg GOx (in 100-mg carrier), and those for cholesterol were achieved with pH 7.5, 33 °C, and 25 mg COD (in 250-mg carrier). The sensor has the cholesterol detection range of 20–250 mg/dL and the glucose detection range of 50–700 mg/dL. This biosensor has outstanding repeatability and selectivity, and the detection results of the practical samples are satisfactory.

  相似文献   

14.
Mix cultivation of microalgae (Spirulina platensis) and yeast (Rhodotorula glutinis) for lipid production was studied. Mixing cultivation of the two microorganisms significantly increased the accumulation of total biomass and total lipid yield. Dissolved oxygen and medium components in the mixed fermentation medium were analyzed. Mix cultivation in monosodium glutamate wastewater was further studied. Result indicated 1,600 mg/L of biomass was obtained and 73% of COD were removed.  相似文献   

15.
Li  Dan  Liang  Xihong  Jin  Yao  Wu  Chongde  Zhou  Rongqing 《Applied biochemistry and biotechnology》2019,188(2):540-554

Nitrogen removal by microorganisms has attracted increasing attention in wastewater treatment. In the present study, a heterotrophic nitrification bacterium was isolated from tannery wastewater and identified as Klebsiella sp. TN-10 based on phenotypic and phylogenetic characteristics. The optimal conditions for cell growth and nitrogen removal were investigated, and the results showed that the greatest ammonium removal rate and maximum biomass were achieved by using sodium pyruvate (7 g/L) as carbon source, C/N 12, pH 7, and temperature 30 °C. Under optimal conditions, the removal rate of ammonia nitrogen reached 96%. Besides, the growth characteristic and the ability of utilizing nitrate and nitrite were investigated. The results demonstrated that strain TN-10 exhibited excellent characteristics to remove both nitrate and nitrite, with the removal rate of 95.44% and 99.87%, respectively. In addition, the nitrite reductase (NiR) and nitrate reductase (NR) involved in denitrification were both active, with the activities of 0.0815 and 0.0283 U/mg proteins, respectively. Furthermore, the aggregation ability, auto-aggregation kinetics, and the relationship between zeta potentials and flocculating efficiency were determined. These results indicated that the strain Klebsiella sp. TN-10, with efficient heterotrophic nitrification-aerobic denitrification ability, has potential application in wastewater treatment.

  相似文献   

16.

The aim of this research was to study the production of humic acids (HA) by Trichoderma reesei from empty fruit bunches (EFBs) of palm oil processing, with a focus on the effects of lignocellulosic content and residual lipids. EFBs from two different soils and palm oil producers were previously characterized about their lignocellulosic composition. Submerged fermentations were inoculated with T. reesei spores and set up with or without residual lipids. The results showed that the soil and the processing for removal of the palm fresh fruits were crucial to EFB quality. Thus, EFBs were classified as type 1 (higher lignocellulosic and fatty acids composition similar to the palm oil and palm kernel oil) and type 2 (lower lignocellulosic content and fatty acids composition similar to palm oil). Despite the different profiles, the fungal growth was similar for both EFB types. HA production was associated with fungal growth, and it was higher without lipids for both EFBs. The highest HA productivity was obtained from type 1 EFB (approximately 90 mg L−1 at 48 h). Therefore, the lignocellulosic composition and the nature of the residual lipids in EFBs play an important role in HA production by submerged fermentation.

  相似文献   

17.
This paper demonstrates the use of copper electrode for the treatment of sugar processing industry wastewater (SPIW) in terms of chemical oxygen demand (COD) by applying electrocoagulation (EC) method. EC process was carried out in batch mode with electrode effective area of 0.0112 m2, supplied current intensity (CI) of 44.64 A/m2 - 223.21 A/m2, electrode gap (EG) of 0.5–2.5 cm, electrolyte (NaCl) dose (ED) of 0.5–2.5 g/L to treat SPIW with initial chemical oxygen demand (COD) of 6000 mg/L. The maximum COD removal 73% of SPIW is achieved at optimized condition of SPIW pH: 7, CI: 89.28 A/m2, EG: 1.5 cm & ED: 1.5 g/L. Sludge and scum generated during EC process were characterized by FTIR, TGA/DTA/DTG, proximate & ultimate analysis to find its applicability and their disposal. Additionally, economic study of EC treatment process at optimum condition suggest treatment cost was 11.2 US$/m3 and it indicate economic results as comparison to other available treatment processes.  相似文献   

18.
In this study, a fermentor consisting of four linked stirred towers that can be used for simultaneous saccharification and fermentation (SSF) and for the accumulation of cell mass was applied to the continuous production of ethanol using cassava as the starchy material. For the continuous process with SSF, the pretreated cassava liquor and saccharification enzyme at total sugar concentrations of 175 g/L and 195 g/L were continuously fed to the fermentor with dilution rates of 0.014, 0.021, 0.031, 0.042, and 0.05 h−1. Considering the maximum saccharification time, the highest volumetric productivity and ethanol yield were observed at a dilution rate of 0.042 h−1. At dilution rates in the range of 0.014 h−1 to 0.042 h−1, high production rates were observed, and the yeast in the first to fourth fermentor showed long-term stability for 2 months with good performance. Under the optimal culture conditions with a feed sugar concentration of 195 g/L and dilution rate of 0.042 h−1, the ethanol volumetric productivity and ethanol yield were 3.58 g/L∙h and 86.2%, respectively. The cell concentrations in the first to fourth stirred tower fermentors were 74.3, 71.5, 71.2, and 70.1 g dry cell/L, respectively. The self-flocculating yeast, Saccharomyces cerevisiae CHFY0321, developed by our group showed excellent fermentation results under continuous ethanol production.  相似文献   

19.

Exploring indigenous microalgae capable of producing significant amounts of neutral lipids through high-throughput screening is crucial for sustainable biodiesel production. In this study, 31 indigenous microalgal strains were isolated from diverse aquatic habitats in KwaZulu-Natal, South Africa. Eight superior lipid-producing strains were selected for further analysis, based on Nile red fluorescence microscopy screening. The microalgal isolates were identified to belong to the genera Chlorella, Neochloris and Chlamydomonas via morpho-taxonomic and molecular approach by 18S rRNA gene sequencing. Chlorella vulgaris PH2 had the highest specific growth rate (μ) and lowest doubling time of 0.24 day−1 and 2.89 ± 0.05 day−1, respectively. Chlorella vulgaris T4 had the highest biomass productivity of 35.71 ± 0.03 mg L−1day−1. Chlorella vulgaris PH2 had the highest lipid content of 34.28 ± 0.47 and 38 ± 9.2% (dcw) as determined by gravimetric analysis and the sulfo-phospho-vanillin (SPV) method, respectively. Chlorella vulgaris PH2 exhibited a high content of saturated fatty acids, while Chlorella sp. T4 exhibited a high total content of saturated and monounsaturated fatty acids with a low content of polyunsaturated fatty acids. The preponderance of neutral lipids suggests that Chlorella sp. T4 is a suitable candidate for biomass feedstock for biodiesel production.

  相似文献   

20.
A novel method based on direct analysis in real time integrated with mass spectrometry was established and applied into rapid determination of ginkgolic acids in Ginkgo biloba kernels and leaves. Instrument parameter settings were optimized to obtain the sensitive and accurate determination of ginkgolic acids. At the sample introduction speed of 0.2 mm/s, high intensity of [M–H] ions for ginkgolic acids were observed in the negative ion mode by utilization of high‐purity helium gas at 450°C. Two microliters of methanol extract of G. biloba kernels or leaves dropped on the surface of Quick‐Strip module was analyzed after solvent evaporated to dryness. A series of standard solutions of ginkgolic acid 13:0 in the range of 2–50 mg/L were analyzed with a correlation coefficient r  = 0.9981 and relative standard deviation (= 5) from 12.5 to 13.7%. The limit of detection was 0.5 mg/L. The results of direct analysis in real time‐mass spectrometry were in agreement with those observed by thermochemolysis gas chromatography. The proposed method demonstrated significant potential in the application of the high‐throughput screening and rapid analysis for ginkgolic acids in dietary supplements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号