共查询到20条相似文献,搜索用时 15 毫秒
1.
Voronoi–Dirichlet polyhedra (VDP) and the method of intersecting spheres were used to perform crystal-chemical analyses of compounds containing complexes [Rh
a
X
n
]
z– (X = F, Cl, Br). It was found that, irrespective of oxidation number (+3, +4, or +5), rhodium atoms always exhibit the coordination number 6 with respect to the halogen atoms and have octahedral coordination. The influence of site symmetry and the valence state of Rh on the distortion of RhX6 octahedra are considered. The electronic configuration of the Rh atoms is shown to influence the symmetry of their valence-force field within the crystal structure. 相似文献
2.
The Voronoi–Dirichlet polyhedra (VDP) and the method of intersecting spheres were used to perform crystal-chemical analysis of compounds containing complexes [Os
a
X
b
]
z–(X = F, Cl, Br, I). Atoms of Os(V) at X = F and Cl, of Os(IV) at X = Cl, Br, and of Os(III) at X = Br were found to exhibit a coordination number of 6 with respect to the halogen atoms and to form OsX6octahedra. The coordination polyhedra of Os(III) for X = Cl, I are square pyramids OsX4. Each Os(III) atom forms one Os–Os bond; as a consequence, the OsBr6octahedra share a face in forming Os2Br3–
9complexes, while the OsX4pyramids (X = Cl, I) dimerize to produce [X4Os–OsX4]2–ions. The influence of the valence state of the Os atoms and of the nature of the halogen atoms on the composition and structure of the complexes formed and some characteristics of the coordination sphere of Os were considered. 相似文献
3.
The Voronoi–Dirichlet polyhedra (VDP) and the method of intersecting spheres were used to perform crystal-chemical analysis of 106 compounds containing palladium atoms surrounded by halogen atoms. Depending on the oxidation number (2 or 4), Pd atoms can bind 4 to 6 X atoms (X = Cl, Br, I) and form PdX
n
coordination polyhedra shaped like octahedra or square pyramids (n = 6), square pyramids (n = 5), or squares (n = 4). A lone electron pair on Pd(II) was found on the basis of X-ray diffraction data. The influence of the palladium valence state on the key stereochemical features of palladium halide complexes is considered in terms of the 18-electron rule. The tendency of palladium atoms to Pd···H aghostic interactions was noted. 相似文献
4.
The Voronoi–Dirichlet polyhedra (VDP) and the method of intersecting spheres were applied to crystal-chemical analysis of all known compounds whose structures contain rhodium atoms surrounded by chalcogen atoms. The influence of the rhodium valence state and the nature of the chalcogen on the main features of Rh stereochemistry are discussed. Rhodium atoms exhibit coordination numbers of 6, 5, or 4 with respect to S, Se, or Te atoms; in addition to the bonds with chalcogens, rhodium can form 1 to 4 bonds with metal atoms. The VDP volume for Rh(III), Rh(2.67), and Rh(II) atoms in selenides and tellurides very weakly depends on the valence state, whereas in the case of sulfides, the volume increases rather regularly with a decrease in the metal oxidation number from Rh(III) to Rh(I). 相似文献
5.
Serezhkin V. N. Serezhkina L. B. Shishkina O. V. Pushkin D. V. 《Russian Journal of Coordination Chemistry》2003,29(3):203-218
Using the Voronoi–Dirichlet partition procedure and the method of intersecting spheres, it is demonstrated that in the crystal structures of chalcogen-containing compounds, Pt(IV) atoms form only PtX6 octahedra (X = S, Se, Te), whereas in the case of Pt(III) and Pt(II), square coordination by X atoms is typical. The Pt(II) atoms can also form PtX5 square pyramids (X = S, Se), PtS6 octahedra, and PtTe3Pt3 quasi-octahedra in which a platinum atom is located in the trans-position to each coordinated tellurium atom. It was found that Pt(II) atoms in the PtX4 squares (X = S, Se), unlike square-coordinated Pt(III) atoms, can form one or two Pt–M bonds (M is a d metal) and 1 to 4 secondary Pt–Q bonds, where Q is an s metal or hydrogen. The main features of platinum stereochemistry depending on the metal valence state and coordination number (CN) and on the nature of the chalcogen atom were quantitatively characterized in terms of the Voronoi–Dirichlet polyhedra. 相似文献
6.
Crystal-chemical analysis of 312 compounds containing complexes [Ru
a
X
b
]
z– (X = O, S, Se, Te) is performed using Voronoi–Dirichlet polyhedra (VDP) and the method of intersecting spheres. In most of these complexes, Ru atoms have coordination number (CN) 6 and form RuX6 octahedra. However, only with respect to oxygen do the Ru(V)–Ru(VII) atoms exhibit CN 5 or 4 with trigonal-bipyramidal and tetrahedral coordination, respectively.The effect of the valence state of the Ru atoms on their stereochemistry is considered. The important role of the Ru–Ru interactions in the structure of the Ru(II)–Ru(V) compounds is established. As a result of the Ru–Ru interactions, the RuX6 octahedra are linked through a face or common edge or give O5Ru–RuO- dimers in which every metal atom occupies one of the vertices of an octahedron formed by the neighboring Ru atom.The dependence of the Ru–Ru and Ru–O bond orders on their lengths is established on the basis of a crystal-structure analysis and the 18-electron rule. 相似文献
7.
The Voronoi–Dirichlet polyhedra (VDP) and the method of intersecting spheres were used to perform a crystal-chemical analysis of compounds whose structures contain Os atoms surrounded by chalcogen atoms. Depending on the valence state, Os atoms bind four to seven X atoms (X = O, S, Se, Te) forming OsX
n
coordination polyhedra which can be tetrahedra (n = 4), trigonal bipyramids or square pyramids (n = 5), octahedra (n = 6), or pentagonal bipyramids (n = 7). In some compounds, pairs of OsO6 octahedra share edges to form Os–Os bonds. The influence of the Os valence state and the nature of the chalcogen atom on the composition and structure of the [Os
a
X
b
] groups is discussed. On the basis of analysis of the crystal-structural data from the standpoint of the 18-electron rule, dependences of the Os–O and Os–Os bond orders on the bond lengths are proposed. 相似文献
8.
采用CCSD/6-311++G(d,p)//B3LYP/6-311++G(d,p)方法研究了HCHO与卤素原子X(X=F、Cl、Br)的反应机理. 计算结果表明, 卤素原子X(X=F、Cl、Br)主要通过直接提取HCHO中的H原子生成HCO+HX(X=F、Cl、Br). 另外还可以生成稳定的中间体, 中间体再通过卤原子夺氢和氢原子直接解离两个反应通道分别生成HCO+HX(X=F、Cl、Br)和H+XCHO(X=F、Cl、Br). 其中卤原子夺氢通道为主反应通道, HCO和HX(X=F、Cl、Br)为主要的反应产物; 且三个反应的活化能均较低, 说明此类反应很容易进行, 计算结果与实验结果符合很好. 电子密度拓扑分析显示, 在HCHO+X反应通道(b)中出现了T型结构过渡态, 结构过渡态(STS)位于能量过渡态(ETS)之后. 并且按F、Cl、Br的顺序, 结构过渡态出现得越来越晚. 相似文献
9.
10.
在Cs对称性和ANO-S基组下, 使用全活化空间自洽场方法(CASSCF), 研究了卤代氰基卡宾自由基及其阴离子的低能电子激发态性质. 为了进一步考虑电子的动态相关效应,采用多组态二级微扰理论(CASPT2)获得更加精确的能量值. 计算结果表明, XCCN的基态是三重态. 单重态和三重态的能隙差ΔES-T(kJ/mol): 7.4(FCCN)<13.4(ClCCN)<16.6(BrCCN). 计算得到, XCCN(X=F, Cl, Br)最低垂直激发能分别为408.3, 385.4和 345.2 kJ/mol, 这归因于π(a′) →nxy 的电子跃迁; XCCN的电子亲和势分别为235.7, 233.0和 237.2 kJ/mol, 与HCCN相比, 其电子亲和势变大. 相似文献
11.
Serezhkin V. N. Kryuchkova G. V. Serezhkina L. B. 《Russian Journal of Coordination Chemistry》2001,27(1):16-22
The Voronoi–Dirichlet polyhedra (VDP) and the method of intersecting spheres were used to perform crystal-chemical analysis of 532 compounds containing 940 crystallographic sorts of titanium atoms in TiO
n
coordination polyhedra. It was found that Ti(IV) or Ti(III) atoms can coordinate four to eight oxygen atoms. For a constant valence state and a constant coordination number (C.N.) of titanium, the Ti–O bond lengths vary by 0.1–1.0 Å. At C.N. #gt; 5, the volume of the metal VDP remains virtually unchanged; when the C.N. decreases to 4, the VDP volume increases by 2–3 Å3. For a constant C.N., Ti(IV) Ti(III) transition is accompanied by an increase in the VDP volume of metal atoms of 0.5–1.9 Å3. The VDP characteristics of the Ti atoms can be used to determine their valence state and to identify the titanium–metal bonds in the structures of compounds. 相似文献
12.
A. N. Cheklov 《Journal of Structural Chemistry》2002,43(2):338-345
The disordered crystal structures of three halogenated propionamides of the general formula CF3CFXCONH2, X = Cl (I), Br (II), and I (III), were studied by X-ray diffraction (CAD-4 automatic diffractometer, MoK
). All these structures are monoclinic with space group P2
1/c
. The structures were solved by direct methods and refined by the full-matrix least-squares procedure anisotropically for nonhydrogen atoms. It was established that structures II and III is isomorphic to each other, whereas structure I is not isomorphic to them, although it has a similar molecular packing. The same crystallographic position is statistically (with different probabilities) occupied by two identical molecules (I, II, or III) with different configurations, which may be regarded as one disordered molecule where two substituents at the C2 atom (halogen X atom and CF3 group) are mutually statistically interchangeable in the space of the unit cell. The amide fragment (–CONH2) of these disordered molecules is practically ordered. The crystal structures of I, II, and III have a developed system of intermolecular H-bonds of N–H
O type and unusual intramolecular H-bonds of N–H
F–C type. 相似文献
13.
Abstract: Two new lead azide halides, PbN3X (X = Cl, Br), were precipitated from aqueous solutions and structurally analyzed by both X-ray single-crystal/powder diffraction and vibrational spectroscopy, in addition to density-functional theory calculations. PbN3Cl crystallizes in the monoclinic space group P21/m (no. 11) with a = 5.5039(11), b = 4.3270(9), c = 7.6576(15) Å, β = 101.28(3)° and adopts a structure with alternating layers of cations and anions. PbN3Br crystallizes in the orthorhombic space group Pnma (no. 62) with a = 7.9192(2), b = 4.2645(1), c = 11.1396(3) Å, and the cations and anions are alternating crosswise. Within PbN3Cl, a Pb2+ cation is surrounded by five azide and four chloride anions whereas, in PbN3Br, the coordination consists of five azide and three bromide anions. Both structures contain chain-like [Pb2X2]2+ units with Pb–Cl = 2.95–3.21 Å and Pb–Br = 3.03–3.38 Å, and the N3– dumbbell is capped by five Pb2+ with Pb–N = 2.79–2.91 Å in PbN3Cl and with Pb–N = 2.69–2.89 Å in PbN3Br. The infrared and Raman spectra show the typical frequencies of a slightly asymmetric N3– unit, in good agreement with DFT phonon calculation. Thermal analyses reveal PbN3Cl to be stable up to 290 °C before it explodes to yield PbCl2, metallic Pb, and gaseous N2. 相似文献
14.
Crystal-chemical analysis of all compounds studied to date and containing SmO
n
coordination polyhedra was performed using the methods of Voronoi–Dirichlet polyhedra (VDP) and intersecting spheres. It was shown that the coordination number (CN) of Sm(III) atoms with respect to oxygen varies from 4 to 12 and the CN of Sm(II) is 5, 7, or 9. The Sm(III) Sm(II) transition was found to entail an increase in the VDP volume by, on average, 2.8 Å3, whereas for a constant oxidation state of Sm, the VDP volume barely depends on the CN, although the Sm–O interatomic distances vary by 0.83 Å for Sm(III)-containing crystals and by 0.39 Å for Sm(II)-containing crystals. The results of analysis of the topology of [Sm
a
O
b
] groups in the crystal structure are presented. 相似文献
15.
Characteristics of the Voronoi–Dirichlet polyhedra were used to perform the crystal-chemical analysis of compounds containing iridium atoms surrounded by nitrogen atoms. The coordination polyhedra formed by Ir(III) atoms are always octahedra (IrN6), whereas the Ir(2.5) and Ir(II) atoms occurring only in binuclear clusters form the IrN4Ir ( is the vacancy) and IrN5Ir quasi-octahedra. The parameters of the Voronoi–Dirichlet polyhedra allow one to estimate quantitatively the main stereochemical characteristics of iridium atoms, depending on their valence state. 相似文献
16.
Serezhkin V. N. Serezhkina L. B. Pushkin D. V. 《Russian Journal of Coordination Chemistry》2004,30(1):48-59
Characteristics of the Voronoi-Dirichlet polyhedra were used to perform the crystal-chemical analysis of 53 compounds containing osmium atoms surrounded by nitrogen atoms. Depending on the metal oxidation state, which varies from Os(II) to Os(VII), the coordination polyhedra formed by osmium atoms can be octahedra or trigonal prisms (OsN6), square pyramids (OsN4Os), tetrahedra (OsN4), or triangles (OsN3). The parameters of the Voronoi-Dirichlet polyhedra allow one to estimate quantitatively the main stereochemical features of Os atoms, depending on their oxidation state, and in controversial cases, they can be used to determine the oxidation state of osmium in the crystal structures. 相似文献
17.
Halogen-hydride interactions between Z-X (Z = CN, NC and X = F, Cl, Br) as halogen donor and H-Mg-Y (Y = H, F, Cl, Br, CH(3)) as electron donor have been investigated through the use of Becke three-parameter hybrid exchange with Lee-Yang-Parr correlation (B3LYP), second-order M?ller-Plesset perturbation theory (MP2), and coupled-cluster single and double excitation (with triple excitations) [CCSD(T)] approaches. Geometry changes during the halogen-hydride interaction are accompanied by a mutual polarization of both partners with some charge transfer occurring from the electron donor subunit. Interaction energies computed at MP2 level vary from -1.23 to -2.99 kJ/mol for Z-F···H-Mg-Y complexes, indicating that the fluorine interactions are relatively very weak but not negligible. Instead, for chlorine- and bromine-containing complexes the interaction energies span from -5.78 to a maximum of -26.42 kJ/mol, which intimate that the interactions are comparable to conventional hydrogen bonding. Moreover, the calculated interaction energy was found to increase in magnitude with increasing positive electrostatic potential on the extension of Z-X bond. Analysis of geometric, vibrational frequency shift and the interaction energies indicates that, depending on the halogen, CN-X···H interactions are about 1.3-2.0 times stronger than NC-X···H interactions in which the halogen bonds to carbon. We also identified a clear dependence of the halogen-hydride bond strength on the electron-donating or -withdrawing effect of the substituent in the H-Mg-Y subunits. Furthermore, the electronic and structural properties of the resulting complexes have been unveiled by means of the atoms in molecules (AIM) and natural bond orbital (NBO) analyses. Finally, several correlative relationships between interaction energies and various properties such as binding distance, frequency shift, molecular electrostatic potential, and intermolecular density at bond critical point have been checked for all studied systems. 相似文献
18.
Dai X Choi SB Braun CW Vaidya P Kilina S Ugrinov A Schulz DL Boudjouk P 《Inorganic chemistry》2011,50(9):4047-4053
The addition of halide anions (X' = Cl(-), Br(-), or I(-)) to perhalocyclohexasilane Si(6)X(12) (X = Cl or Br) led to the formation of complexes comprising [Si(6)X(12)X'(2)](2-) dianions. An upfield shift in the (29)Si NMR spectra was noted upon coordination, and structural determination by X-ray crystallography showed that the dianions adopt an "inverse sandwich" structure where the six cyclic silicon atoms form a planar hexagon with the two halide anions X' located on the 6-fold axis equally disposed above and below the plane of the Si(6) ring. Additionally, these apical X' atoms are within the van der Waals bonding distance to the silicon ring atoms, indicating a strong interaction between X' and silicon atoms. These results detail crystallographic variations within the halogen series providing further insight into the nature of the Lewis acid sites above and below the Si(6)X(12) ring, where interactions with hard Lewis bases such as halide anions are observed. Interestingly, the stereochemistry of the silicon atoms in [Si(6)X(12)X'(2)](2-) is not affected much by the size or electronegativity of the halogen atoms. 相似文献
19.
Franz Pertlik 《Monatshefte für Chemie / Chemical Monthly》1988,119(4):451-456
The crystal structures of five isotypic hexagonal compounds with general formulaMAs4O6
X [M=K, NH4;X=Cl, Br, I; space group: P622;Z=1] were determined from 370 single crystal X-ray data and refined toR values <0.05. The structure type is characterized by neutral charged
[As2O3] sheets arranged parallel (00.1). The As atoms of neighbouring two sheets point to each other and the sheets are combined by interlayeredM andX atoms, respectively. TheM atoms are coordinated to twelve oxygen atoms, theX atoms are coordinated to twelve arsenic atoms. In both cases the coordination polyhedron is a hexagonal prism. The compounds were synthesized by thermal treatments of cubic As2O3 and potassium or ammonium haloids in a saturated aqueous solution of potassium acetate resp. ammonia [500 K, saturation vapour pressure].
Die Verbindungen KAs4O6 X (X=Cl, Br, I) und NH4As4O6 X (X=Br, I): Hydrothermalsynthese und Strukturbestimmung
Zusammenfassung Die Kristallstrukturen der fünf isotypen hexagonalen Verbindungen mit der allgemeinen FormelMAs4O6 X [M=K, NH4;X=Cl, Br, I; Raumgruppe: P622;Z=1] wurden anhand von 370 Einkristall-Röntgendaten bestimmt und aufR-Werte <0.05 verfeinert. Der Strukturtyp ist ausgezeichnet durch neutrale [As2O3]-Schichten, die parallel (00.1) angeordnet sind. Die As-Atome zweier benachbarter Schichten weisen jeweils aufeinander zu, und die Schichten selbst werden durch zwischengelagerteM- bzw.X-Atome verbunden. DieM-Atome werden jeweils von zwölf O-Atomen, dieX-Atome von zwölf As-Atomen umgeben. Das Koordinationspolyeder ist in beiden Fällen ein hexagonales Primsa. Die einzelnen Verbindungen wurden unter Hydrothermalbedingungen aus kubischem As2O3 und dem jeweiligen Kalium- oder Ammoniumhalogenid in einer gesättigten wäßrigen Lösung von Kaliumacetat bzw. Ammoniak synthetisiert (500 K, Sättigungsdampfdruck).相似文献
20.
Based on the recently reported D(5h) C(50), the geometries and stabilities of its Saturn-like derivatives C(50)X(10) (X=F, Cl, Br) have been investigated by DFT method. Compared with C(50), the equatorial carbon atoms in C(50)X(10) have been saturated by halogens and change to sp(3) hybridization to release the large angle strain. Because the equatorial carbon atoms have been taken out of the pi system by the halogens "ring," the C(50)X(10) system has been split into two well-delocalized conjugated annulene subunits, and then the electronic stabilization has been enhanced. 相似文献