首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The redox properties of Cu(II) species in FAU matrices have been studied by temperature programmed reduction (TPR) in hydrogen and by XAFS analysis of the products obtained after (stationary) reduction treatments at various temperatures. The influence of the matrix polarity was investigated by comparing aluminosilicate FAU (Y zeolite) with siliceous FAU. In addition, the influence of Zn ions on the reduction process was studied. It was found that both the matrix composition and the presence of zinc ions exert a significant influence on the course of the reduction. In Y zeolite, heat treatment which is known to transfer Cu(II) ions to remote sites (SI, SI', SII') affects the reduction process dramatically. Cu(II) is most easily reduced in siliceous FAU, but the reduction proceeds in two clearly separated steps. Between these steps, small Cu(0) nuclei coexist with Cu(I) species, apparently unable to activate hydrogen for the autocatalytic reduction of the remaining Cu ions. The polarity of the matrix causes an upshift of the Cu(II) reduction temperature (in TPR by ca. 80 K for sites in the large cavity, by ca. 105 K for the remote sites), but the reduction of Cu(I) depends strongly on the simultaneous presence of Cu(0) and on its ability to activate hydrogen and induce an autocatalytic reduction mechanism. While Cu(I) species in the large cavities are easily reduced to the metal, tending to segregate from the zeolite lattice, Cu(I) ions in remote sites are strongly stabilized towards further reduction and even traces of Cu metal form only at very high temperatures. In the presence of zinc ions, the Cu metal particles formed were found to be smaller than in zinc-free samples.  相似文献   

2.
采用两步晶化法制备ZSM-5/MCM-48微介孔复合分子筛,通过调变前驱体溶胶的晶化时间获得不同结构的ZSM-5/MCM-48基分子筛催化剂。采用XRD、N2-吸附、SEM、TEM、FT-IR和Py-FTIR等手段进行表征,结果表明,前驱体溶胶的晶化时间对ZSM-5/MCM-48复合分子筛的结构和表面酸性产生重要的影响,而特定结构的复合分子筛基催化剂可以显著改变甲醇制汽油(MTG)反应的产物分布,与ZSM-5基催化剂相比显著降低了油品中芳烃和均四甲苯的含量。阐明了其催化作用机制是由于介孔结构的MCM-48对微孔结构的ZSM-5界面或表面的修饰作用。  相似文献   

3.
The kinetics of the dopaquinone cyclization in the absence and presence of Cu(II) ions at pHs from 6 to 7.4 has been studied by cyclic, normal and reverse pulse voltammetry. Distinct inhibition of the dopaquinone ring closure reaction was observed in the. presence of Cu(II) ions. At pHs below 6 this effect is attributed to the formation of amino acid type complexes. At pH 7.4 the amino acid type and the catechol type Cu(II)-DOPA chelates coexist, and simultaneous interactions of copper ions with both ends of the DOPA molecule result in the association of the Cu(II)-DOPA complexes. These effects, observed at physiological pH, suggest that the rate of melanin formation is affected by the presence of Cu(II) ions.  相似文献   

4.
Hierarchical MFI zeolite was synthesized following a synthesis route using organic-inorganic hybrid surfactants; the resultant zeolite with mesoporous/microporous hierarchical structure exhibited remarkably high resistance to deactivation in catalytic activity of various reactions such as isomerization of 1,2,4-trimethylbenzene, cumene cracking, and esterification of benzyl alcohol with hexanoic acid, as compared with conventional MFI and mesoporous aluminosilicate MCM-41.  相似文献   

5.
Photoluminescence combined with diffuse reflectance UV—Vis spectroscopy was used to characterise both the pure siliceous MCM-41 and Ti-MCM-41 containing tetrahedral Ti(IV) species anchored onto the inner walls of the siliceous MCM-41. Both Ti-MCM-41 and MCM-41 showed complex photoemission signals and this study allows, for the first time, the distinction of the emission signals of tetrahedral Ti9IV) ions from those due to silica surface centres.  相似文献   

6.
新型分子筛Ti-MMM-1的合成及其催化性能的研究   总被引:6,自引:0,他引:6  
通过控制TEOS的水解,在不同时间添加与MCM-41和MFI相应的有机模板剂合成出了一种新型分子筛,Ti-MMM-1,采用XRD、FT-IR和低温N2吸附对其进行表征,并用H2O2氧化环己烷和环己醇对其催化活性进行评价.结果表明,Ti-MMM-1是一种具有MCM-41和MFI结构的两相混合的微孔/介孔材料,IR分析表明钛原子已进入分子筛骨架,并在环己烷和环己醇的氧化中表现出较好的催化活性和较高的选择性.  相似文献   

7.
A microporous-mesoporous material composed of MCM-41 and MFI was produced by a two-step synthetic process. The solid, called “MMM-1,” was characterized by X-ray diffraction (XRD), N2 physisorption, and transmission electron microscopy (TEM). At early stages of crystallization at 170°C, MCM-41 was formed exclusively, while at heating times longer than 96h MFI was formed. At intermediate times, MMM-1 was formed with varying amounts of MFI depending on the crystallization time. XRD revealed that the material could be severely oriented by sample preparation, which was consistent with an unusual ribbon-like morphology observed in TEM. This morphology was not seen for either pure MCM-41 or MFI. The N2 physisorption isotherm for MMM-1 showed two distinct regions of capillary condensation, with H2 hysteresis. Synthesis and subsequent use of Al-MMM-1 in the isomerization of m-xylene and comparison to Al-MCM-41 and Al-MFI showed that although the latter material had a higher total conversion, Al-MMM-1 had a higher selectivity for p-xylene. Al-MMM-1 had a much higher selectivity and conversion than Al-MCM-41, which makes it promising for use in future catalytic applications.  相似文献   

8.
金属离子修饰的M41S介孔分子筛催化剂体系是当前多相催化剂研究的热点.虽然有关介孔分子筛金属离子修饰的方法有多种[1],但均存在着负载的金属粒子在载体表面负载量低或分散不均匀等缺点;采用本课题组的有机官能团化法[2]可以得到高分散度和高负载量的介孔分子筛负载金属氧化物  相似文献   

9.
Lipid peroxidation is often initiated using Cu(II) ions. It is widely assumed that Cu(II) oxidizes preformed lipid hydroperoxides to peroxyl radicals, which propagate oxidation of the parent fatty acid via hydrogen atom abstraction. However, the oxidation of alkyl hydroperoxides by Cu(II) is thermodynamically unfavorable. An alternative means by which Cu(II) ions could initiate lipid peroxidation is by their one-electron reduction of lipid hydroperoxides to alkoxyl radicals, which would be accompanied by the generation of Cu(III). We have investigated by EPR spectroscopy, in conjunction with the spin trap 5,5-dimethyl-1-pyrroline N-oxide, the reactions of various Cu(II) chelates with tert-butylhydroperoxide. Spectra contained signals from the tert-butoxyl, methyl, and methoxyl radical adducts. In many previous studies, the signal from the methoxyl adduct has been assigned incorrectly to the tert-butylperoxyl adduct, which is now known to be unstable, releasing the tert-butoxyl radical upon decomposition. This either is trapped by 5,5-dimethyl-1-pyrroline N-oxide or undergoes beta-scission to the methyl radical, which either is trapped or reacts with molecular oxygen to give, ultimately, the methoxyl radical adduct. By using metal chelates that are known to be specific in either their oxidation or reduction of tert-butylhydroperoxide (the Cu(II) complex of bathocuproine disulfonic acid and the Fe(II) complex of diethylenetriaminepentaacetic acid, respectively) for comparison, we have been able to deduce, from the relative concentrations of the three radical adducts, that the Cu(II) complexes tested each reduce tert-butylhydroperoxide directly to the tert-butoxyl radical. These findings suggest that a previously overlooked reaction, namely the direct reduction of preformed lipid hydroperoxides to alkoxyl radicals by Cu(II), may be responsible for the initiation of lipid peroxidation by Cu(II) ions.  相似文献   

10.
Thermal evacuation of a surfactant template from pure siliceous MCM-41 and MCM-41 containing aluminium in hydrogen flow was investigated. Micelle templated MCM-41 were prepared using hexadecyltrimethylammonium bromide (CTAB). The products of thermal surfactant degradation outside and inside pores were identified at various temperatures using 13C solid-state nuclear magnetic resonance (NMR) spectroscopy, gas chromatography coupled with mass spectrometer (GC-MS) and temperature programmed desorption coupled with mass spectrometer (TPD-MS). The GC-MS and 13C MAS NMR results obtained from this study provide an insight into the mechanism of surfactant transformation during MCM-41 synthesis on molecular level.  相似文献   

11.
We reported here the simultaneous influence of surface acidity and pore size of Al-substituted hexagonal mesoporous silicas(Al-doped plugs-containing SBA-15 and Al-doped MCM-41) on polymerization of THF.These materials were directly synthesized by introduced aluminum isopropoxide into reaction mixture including surfactant and siliceous precursor.Al-doped plugs-containing SBA-15(denotes as PAS) samples not only possess typical two-step desorption isotherms,which implied PAS materials generated plugs in their mesochannel,but also exhibit larger pore size and thicker wall than that of Al-doped MCM-41(denotes as ACM), which implied PAS would have a great advantage on catalytic reaction involving large molecular(e.g.polymer of THF) in industrial point of view.To investigate catalytic activity of PAS and ACM with moderate acidic sites the polymerization of THF in the presence of acetic anhydride was carried out.The results showed PAS exhibiting good performance on polymerization of THF.Such result could be related to the large pore size and moderate acidic sites.  相似文献   

12.
The hydrothermally stable and long-range ordered Ce-MCM-48 and Fe-MCM-48 were conveniently synthesized at 393 K for 24 h by directly adding fluoride ions to the initial gel without posttreatment and pH adjustment. The Ce-MCM-48 with a Si/Ce of 200 and 100, which were prepared by directly adding fluoride ions, could still maintain their mesoporous structures after refluxing in boiling water for 3 days. The incorporation of Ce into MCM-48 could enhance the hydrothermal stability of MCM-48 in the absence of fluoride ions; however, the incorporation of Fe into MCM-48 materials barely improved the hydrothermal stability of MCM-48 materials. The effect of adding NaF was much more efficient in enhancement of hydrothermal stability than that of the incorporation of Ce. The addition of fluoride ions mainly improves the degree of polymerization of silicates. The Ce(4+) ions in Ce-MCM-48 appear to be present partly in tetrahedral coordination in the framework and partly as CeO(2) particles on the surface of framework. The Ce positioned on the surface of pore walls and in the framework both provide the protection against water attack.  相似文献   

13.
Wu J  Hou H  Han H  Fan Y 《Inorganic chemistry》2007,46(19):7960-7970
With the motivation of searching for highly selective ferric ion sorbents, two open-framework and microporous materials, {[Pb7(HEDTP)2(H2O)] x 7H2O}n (1) and {[Zn2(H4EDTP)] x 2H2O}n (2) [H8EDTP = N,N,N',N'-ethylenediaminetetrakis(methylenephosphonic acid)], have been synthesized and structurally characterized. The structure of compound 1 results from the seven crystallographically different lead atoms that are bridged by two HEDTP(7-) ligands to yield a three-dimensional microporous framework with tunnels along the a and b axes. Compound 2 features a layer architecture built of square waves along the a axis. The layers are connected by hydrogen bonds between uncoordinated phosphonate oxygen atoms to form a three-dimensional supramolecular network, with one-dimensional tunnels along the a axis. Both compounds 1 and 2 exhibited high ion sorption and exchange capacities for millimolar concentrations of Fe(III). Specifically, when 0.01 g of 1 (or 2) was added to 5 mL of a 1 mM metallic chloride aqueous solution and the mixture was allowed to stand for 2 days at room temperature, compound 1 adsorbed nearly 100% of Fe(III) and compound 2 adsorbed 96.8% of Fe(III). They were also found to adsorb ferric ions selectively over other metal ions, such as Ca(II), Cr(II), Mn(II), Cu(II), Zn(II), Cd(II), etc. Their special ferric ion uptake capacities may be attributed to the cation exchange, coordination bonding, and electrostatic attraction between ferric ions and metal phosphonates.  相似文献   

14.
The second reduction step of Eu(III), Yb(III) and Sm(III) in 0.04 M tetramethylammonium perchlorate in the pH range 1.8–7 was investigated by cyclic voltammetry and d.c. polarography. The proposed reaction scheme at large hydrogen ion/lanthanide ion concentration ratios involves the reduction of the lanthanide(II) ion to the metallic state accompanied by a surface catalytic reaction in which the reactant is regenerated and also hydroxyl ions are formed which induces the precipitation of lanthanide(II) hydrous oxide on the electrode surface. This lanthanide(II) hydroxide is reduced at more negative potentials than the hydrated lanthanide(II) species. At lower hydrogen ion/lanthanide ion concentration ratios a preceding chemical reaction, probably involving hydrolyzed lanthanide(II) species, becomes rate determining.  相似文献   

15.
Adsorption behavior of copper and cyanide ions at TiO2-solution interface   总被引:2,自引:0,他引:2  
Adsorption of both copper and cyanide ions in the absence and in the presence of their complexes at TiO2-solution interfaces was investigated. The objective of this study was to demonstrate the possibility of removing heavy metal ions, exemplified by Cu(II), from aqueous solution in the presence of a ligand, e.g., CN-. Several parameters such as pH and Cu(II) and CH- ion concentration that may affect the magnitude of copper and cyanide adsorption were studied. The equilibrium of Cu-CN speciation distribution in solution and stability constant calculations have been investigated to determine the adsorption behavior of Cu(II). Results revealed that free Cu(II) ions (in the absence of CN-) were completely separated at pH8, while the adsorption of free cyanide ions, in the absence of Cu(II), reached a maximum value of 48% at pH 7. For Cu-CN complexes, the presence of CN- in excessive amount with respect to Cu(II) retarded the adsorption of Cu(II). This is attributed to the formation of multivalent anionic cyano-copper complexes such as Cu(CN)2-(3) and Cu(CN)(3-)4.  相似文献   

16.
The objective of this study was to synthesize micropore-mesopore composite materials by two-step crystallization. The colloidal MFI was first synthesized using a structure-directing agent tetrapropylammonium hydroxide as a template in the first step. This colloid was then self-assembled to form mesoporous structure by using cetyltrimethylammonium bromide as a surfactant. These materials were characterized by powder X-ray diffraction, nitrogen sorption, SEM and TEM. Due to the thick walls produced, it cannot sustain the local strain caused by the crystallization: the mesostructure is collapsed upon heating. The mixed phases of MFI and MCM-41 were obtained by optimizing the synthesis times and reaction temperatures.  相似文献   

17.
Cu修饰的MCM—41的合成,表征及对芳烃羟化反应催化作?…   总被引:15,自引:1,他引:14  
利用MCM-41形成过程中协同自组装特点,在合成过程中引入Cu(NH3)4^2+,制备出过渡金属表面修饰的纯硅介孔分子筛Cu-MCM-41,采用XRD,ICP,ESR,N2吸附等手段确定Cu处于MCM-41的表面,取代了端羟基中氢的位置,与骨架桥氧和硅羟基中的氧配位,利用苯酚羟化反应为探针,考察了Cu-MCM-41的催化活性。结果表明,Cu-MCM-41具有很高的苯酚羟化活性,与TS-1分子筛的催  相似文献   

18.
Following the structural concept of copper-containing proteins in which dinuclear copper centers are connected by hydroxide bridging ligands, a bidentate copper(II) complex has been incorporated into nano-confined MCM-41 silica by a multistep sequential grafting technique. Characterization by a combination of EPR spectroscopy, X-ray photoelectron spectroscopy (XPS), UV/Vis spectroscopy, IR spectroscopy , and solid-state (13)C and (29)Si cross-polarization magic-angle spinning (CP-MAS) NMR suggests that dinuclear Cu complexes are bridged by hydroxide and other counterions (chloride or perchlorate ions), similar to the situation for EPR-undetectable [Cu(II)···Cu(II)] dimer analogues in biological systems. More importantly, a dynamic mononuclear-dinuclear equilibrium between different coordination modes of copper is observed, which strongly depends on the nature of the counterions (Cl(-) or ClO(4)(-)) in the copper precursor and the pore size of the silica matrix (the so-called confinement effect). A proton-transfer mechanism within the hydrogen-bonding network is suggested to explain the dynamic nature of the dinuclear copper complex supported on the MCM-41 silica.  相似文献   

19.
Exchange of the guest Mn2+ ions in Mn3[(Mn4Cl)3(BTT)8(CH3OH)10]2 (1-Mn2+; BTT=1,3,5-benzenetristetrazolate) with selected cations results in the formation of isostructural framework compounds 1-M (M=Li+, Cu+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+). Similar to the parent compound, the new microporous materials are stable to desolvation and exhibit a high H2 storage capacity, ranging from 2.00 to 2.29 wt % at 77 K and 900 torr. Measurements of the isosteric heat of adsorption at zero coverage reveal a difference of 2 kJ/mol between the weakest and strongest H2-binding materials, which is attributed to variations in the strength of interaction between H2 molecules and unsaturated metal centers within each framework. The Co2+-exchanged compound, 1-Co2+, exhibits an initial enthalpy of adsorption of 10.5 kJ/mol, the highest yet observed for a microporous metal-organic framework.  相似文献   

20.
The square-wave voltammetric behaviour of cysteine and saccharin was studied at a static mercury drop electrode at pH 7.4 in the presence of Cu(II) ions. In the presence of excess Cu(II), cysteine exhibited three reduction peaks for Hg(SR)2 (−0.086 V), free Cu(II) (−0.190 V) and Cu(I)SR (−0.698 V), respectively. Saccharin produced a catalytic hydrogen peak at −1.762 V. In the presence of Cu(II), saccharin gave a new peak (−0.508 V), corresponding to the reduction of Cu(II)–saccharinate, which in the presence of cysteine formed a mixed ligand complex (−0.612 V), CuL2A2 (L=saccharin and A=cysteine). The peak potentials and currents of the obtained complexes were dependent on the ligand concentration and accumulation time. The stoichiometries and overall stability constants of these complexes were determined by Lingane's method (voltammetrically) and Job’s method (spectrophotometrically). The mixed ligand complex in the molar ratio 1:2:2 (log β=33.35) turned out to be very much stronger than the 1:1 Cu(I)SR (log β=21.64) and 1:2 Cu(II)–saccharinate (log β=16.68) complexes. Formation of a mixed ligand complex can be considered as a type of synergism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号