首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new strontium gallium nitrides were obtained as single crystals by reaction in molten Na. Black Sr(3)GaN(3) is isostructural with its transition metal analogues, Sr(3)MnN(3), Ba(3)MnN(3), Sr(3)CrN(3), Ba(3)CrN(3), and Ba(3)FeN(3), and is the first example of a 313-ternary nitride containing only main group metals. It crystallizes in space group P6(3)/m (No. 176) with a = 7.584(2) A, c = 5.410(3) A, and Z = 2. Black Sr(6)GaN(5) is isostructural with Ca(6)GaN(5) and also with its transition metal analogues, Ca(6)MnN(5) and Ca(6)FeN(5). It crystallizes in space group P6(3)/mcm (No. 193) with a = 6.6667(6) A, c = 12.9999(17) A, and Z = 2. Both Ga compounds contain isolated planar [GaN(3)](6)(-) nitridometallate anions of D(3)(h)() symmetry.  相似文献   

2.
3.
4.
5.
Rubidium trigallium bis(triphosphate), RbGa3(P3O10)2 has been synthesized by solid‐state reaction and studied by single‐crystal X‐ray diffraction at room temperature. This compound is the first anhydrous gallium phosphate containing both GaO4 tetra­hedra (Ga1) and GaO6 octa­hedra (Ga2 and Ga3). The three independent Ga atoms are located on sites with imposed symmetry 2 (Wickoff positions 4a for Ga1 and 4b for Ga2 and Ga3). The GaO4 and GaO6 polyhedra are connected through the apices to triphosphate groups and form a three‐dimensionnal host lattice. This framework presents inter­secting tunnels running along the [001] and <110> directions, where the Rb2+ cations are located on sites with imposed symmetry 2 (Wickoff position 4a). The structure also exhibits remarkable features, such as infinite helical columns created by the junction of GaO4 and PO4 tetra­hedra.  相似文献   

6.
The crystal structure of tristrontium trigallium tetraborate oxide hydro­xide has been determined by X‐ray diffraction using a crystal grown by hydro­thermal crystallization of a strontium gallo‐borate glass. It represents a new orthoborate structure type built of complex layers formed by BO3 triangles sharing corners with Ga2O7 tetrahedral dimers and GaO4OH square pyramids. The Sr atoms occupy both inter‐ and intralayer sites.  相似文献   

7.
Crystal structures of three Ni(CN)(4)(2)(-) salts all with eclipsed ligands and varying axial stacking arrangements are presented. The absorption spectra of all three salts show a slight red shift in the x,y-polarizations and a large red shift in their z-polarizations upon crystallization from solution. Semiempirical ZINDO calculations provide a good model of the solid state, even with only a three-molecule segment, allowing reproduction of the red-shifting and intensity increase upon crystallization found experimentally. The modified nickel beta(s,p) bonding parameter of -5 found appropriate for Ni coordination in our previous studies of single Ni(CN)(4)(2-) planes and a helically stacked Cs(2)[Ni(CN)(4)].H(2)O crystal was changed to -3 for the more parallel-stacked Ni(CN)(4)(2-) planes in this case, while beta(d) was retained at -41. Crystal data are as follows: Na(2)[Ni(CN)(4)].3H(2)O, triclinic space group P1, a = 7.2980(10) A, b = 8.8620(10) A, c = 15.132(2) A, alpha = 89.311(5) degrees, beta = 87.326(5) degrees, gamma = 83.772(6) degrees, V = 971.8(2) A(3), T = 100 K, Z = 4, R = 0.024, R(w) = 0.064; Sr[Ni(CN)(4)].5H(2)O, monoclinic space group C2/m, a = 10.356(2) A, b = 15.272(3) A, c = 7.1331(10) A, beta = 98.548(12) degrees, V = 1115.6(3) A(3), T = 100 K, Z = 4, R = 0.024, R(w) = 0.059; Rb(2)[Ni(CN)(4)].1.05H(2)O, triclinic space group P1, a = 8.6020(10) A, b = 9.6930(10) A, c = 12.006(2) A, alpha = 92.621(6) degrees, beta = 94.263(6) degrees, gamma = 111.795(10) degrees, V = 924.0(2) A(3), T = 100 K, Z = 4, R = 0.034, R(w) = 0.067.  相似文献   

8.
Thallium(III) oxide can be dissolved in water in the presence of strongly complexing cyanide ions. Tl(III) is leached from its oxide both by aqueous solutions of hydrogen cyanide and by alkali-metal cyanides. The dominating cyano complex of thallium(III) obtained by dissolution of Tl2O3 in HCN is [Tl(CN)3(aq)] as shown by 205Tl NMR. The Tl(CN)3 species has been selectively extracted into diethyl ether from aqueous solution with the ratio CN-/Tl(III) = 3. When aqueous solutions of the MCN (M = Na+, K+) salts are used to dissolve thallium(III) oxide, the equilibrium in liquid phase is fully shifted to the [Tl(CN)4]- complex. The Tl(CN)3 and Tl(CN)4- species have for the first time been synthesized in the solid state as Tl(CN)3.H2O (1), M[Tl(CN)4] (M = Tl (2) and K (3)), and Na[Tl(CN)4].3H2O (4) salts, and their structures have been determined by single-crystal X-ray diffraction. In the crystal structure of 1, the thallium(III) ion has a trigonal bipyramidal coordination with three cyanide ions in the equatorial plane, while an oxygen atom of the water molecule and a nitrogen atom from a cyanide ligand, attached to a neighboring thallium complex, form a linear O-Tl-N fragment. In the three compounds of the tetracyano-thallium(III) complex, 2-4, the [Tl(CN)4]- unit has a distorted tetrahedral geometry. Along with the acidic leaching (enhanced by Tl(III)-CN- complex formation), an effective reductive dissolution of the thallium(III) oxide can also take place in the Tl2O3-HCN-H2O system yielding thallium(I), while hydrogen cyanide is oxidized to cyanogen. The latter is hydrolyzed in aqueous solution giving rise to a number of products including (CONH2)2, NCO-, and NH4+ detected by 14N NMR. The crystalline compounds, Tl(I)[Tl(III)(CN)4], Tl(I)2C2O4, and (CONH2)2, have been obtained as products of the redox reactions in the system.  相似文献   

9.
10.
The new scandium(III) carbodiimides Sc2(CN2)3 and Sc2O2(CN2) were prepared by solid-state metathesis reactions between Li2(CN2) and ScCl3 and, regarding Sc2O2(CN2), Sc2O3 was added. The X-ray powder diffraction pattern refinements lead to a trigonal-rhombohedral (R3 c) crystal system for Sc2(CN2)3 and to an orthorhombic (Immm) crystal system for Sc2O2(CN2). The structure of Sc2(CN2)3 is isotypic to the well-known rare earth carbodiimides RE2(CN2)3 with the smaller cations RE = Tm, Yb, and Lu, whereas Sc2O2(CN2) is not isotypic to the known RE2O2(CN2) (RE = Y, La, Ce–Gd, except Pm) compounds. Both crystal structures are represented by layered arrangements of scandium, respectively scandium and oxide, alternating with carbodiimide layers.  相似文献   

11.
12.
13.
《Solid State Sciences》2001,3(1-2):133-142
Two new cobalt phosphates, NaCo3(OH)(PO4)2.1/4H2O (1) and Na(NH4)Co2(PO4)2.H2O (2) have been synthesized hydrothermally and characterized by single crystal X-ray diffraction methods, vibrational (IR and Raman) spectroscopy, thermogravimetric analysis and magnetic measurements. The structure of 1 is a new framework type while 2 is an example of a chiral cobalt phosphate. Both phases contain channels in which the Na+, NH4+ cations and H2O molecules are located.  相似文献   

14.
Ba2(CN2)(CN)2 and Sr2(CN2)(CN)2 – the First mixed Cyanamide Cyanides The mixed cyanamide-cyanides M2(CN2)(CN)2 (M = Ba, Sr) were synthesized by the reaction of Ba2N and SrCO3, respectively, with HCN at 630°C. The crystal structure of Ba2(CN2)(CN)2 was determined from single-crystal X-ray investigations at room temperature and ?100°C; the isostructural Sr2(CN2)(CN)2 was refined using powder methods (P63/mmc; Ba2(CN2)(CN)2: a = 1 066.52(5) pm, c=696.82(3) pm; Sr2(CN2)(CN)2: a = 1 035.91(1) pm, c = 664.23(1) pm; Z = 4). The crystal structure is a partially filled defect variant of the anti-NiAs structure type with a distorted hexagonal close packed arrangement of M2+-ions. All CN22? and one quarter of the CN? ions occupy 3/4 of the octahedrally coordinated interstices, the remaining cyanide anions are located at 3/8 of the tetrahedral sites. In the crystal structure the CN? are coordinated to the cations both end-on and side-on. All anions can be distinguished by vibrational spectroscopy.  相似文献   

15.
1INTRODUCTION Recently,cyano-bridged lanthanide-transition me-tal complexes have been extensively investigateddue to their potential applications as precursors in the preparation of rare earth orthoferrites,fluores-cent and magnetic materials[1].Various complexes of this system have been obtained in order to ex-plore the relations between structures and pro-perties by using different ligands,such as DMF,4,4?-bipy,and so on,to fill the coordination sites of lanthanide ions[2~9].But up to…  相似文献   

16.
Phase relations have been investigated within the Sr5Nb4O15−SrTiO3−Sr4Nb2O9 region of the SrO−Nb2O5−TiO2 system with a view to clarifying the occurrence of fully oxidised perovskite related phases. Overall phase analysis was carried out by powder X-ray diffraction and microstructures were clarified by transmission electron microscopy. There is only one main composition triangle in this area at 1350°C. The tie-line between Sr5Nb4O15 and SrTiO3 contains a homologous series of hexagonal layered perovskite phases including Sr6Nb4TiO18 and Sr7Nb4Ti2O21. The phase Sr4Nb2O9 is a nonstoichiometric phase with a disordered perovskite structure. There is some extension of this phase along the Sr4Nb2O9−SrTiO3 tie-line, but SrTiO3 does not show a significant composition range. Samples with a composition Sr4Nb2O9, when heated at 900°C show several ordered modifications. Samples along the Sr4Nb2O9−SrTiO3 tie-line which are annealed at 900°C contain these ordered materials together with samples showing considerable short range order which increases as the Ti content increases.  相似文献   

17.
Synthesis of Y2O2(CN2) and Luminescence Properties of Y2O2(CN2):Eu Crystalline powders of the new compound Y2O2(CN2) were prepared by solid state reactions from different mixtures of YCl3/YOCl/Y2O3 and Li2(CN2) at temperatures between 620 °C and 650 °C. Structure refinements based on X‐ray powder diffraction revealed that trigonal Y2O2(CN2) crystallizes with a structure that is closely related to that of Y2O2S, whereas linear N‐C‐N units replace sulphur atoms in Y2O2S. In addition, a hexagonal polytype of Y2O2(CN2) was obtained in which a different stacking sequence of yttrium atoms creates a doubling of the c‐axis. Europium‐doped samples of Y2O2(CN2) were prepared and the luminescence properties of Y2O2(CN2):Eu are presented.  相似文献   

18.
VIV oxyfluorides are of interest as frustrated magnets. The successful synthesis of two‐dimensionally connected vanadium(IV) oxyfluoride structures generally requires the use of ionic liquids as solvents. During solvothermal synthesis experiments aimed at producing two‐ and three‐dimensional vanadium(IV) selenites with triangular lattices, the title compound, diaquatetra‐μ‐fluorido‐dioxidodivanadium(IV) monohydrate, V2O2F4(H2O)2·H2O, was discovered and features a new infinite V4+‐containing two‐dimensional layer comprised of fluorine‐bridged corner‐ and edge‐sharing VOF4(H2O) octahedral building units. The synthesis was carried out under solvothermal conditions. The V4+ centre exhibits a typical off‐centring, with a short V=O bond and an elongated trans‐V—F bond. Hydrogen‐bonded water molecules occur between the layers. The structure is related to previously reported vanadium oxyfluoride structures, in particular, the same layer topology is seen in VOF3.  相似文献   

19.
20.
The electronic and geometric structures of gallium dinitride GaN 2, and gallium tetranitride molecules, GaN 4, were systematically studied by employing density functional theory and perturbation theory (MP2, MP4) in conjunction with the aug-cc-pVTZ basis set. In addition, for the ground-state of GaN 4( (2)B 1) a density functional theory study was carried out combining different functionals with different basis sets. A total of 7 minima have been identified for GaN 2, while 37 structures were identified for GaN 4 corresponding to minima, transition states, and saddle points. We report geometries and dissociation energies for all the above structures as well as potential energy profiles, potential energy surfaces and bonding mechanisms for some low-lying electronic states of GaN 4. The dissociation energy of the ground-state GaN 2 ( X (2)Pi) is 1.1 kcal/mol with respect to Ga( (2)P) + N 2( X (1)Sigma g (+)). The ground-state and the first two excited minima of GaN 4 are of (2)B 1( C 2 v ), (2)A 1( C 2 v , five member ring), and (4)Sigma g (-)( D infinityh ) symmetry, respectively. The dissociation energy ( D e) of the ground-state of GaN 4, X (2)B 1, with respect to Ga( (2)P) + 2 N 2( X (1)Sigma g (+)), is 2.4 kcal/mol, whereas the D e of (4)Sigma g (-) with respect to Ga( (4)P) + 2 N 2( X (1)Sigma g (+)) is 17.6 kcal/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号