首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This tutorial review discusses a new class of colloidal metal nanoparticles that is able to enhance the efficiencies of surface-enhanced Raman scattering (SERS) by as much as 10(14)-10(15) fold. This enormous enhancement allows spectroscopic detection and identification of single molecules located on the nanoparticle surface or at the junction of two particles under ambient conditions. Considerable progress has been made in understanding the enhancement mechanisms, including definitive evidence for the single-molecule origin of fluctuating SERS signals. For applications, SERS nanoparticle tags have been developed based on the use of embedded reporter molecules and a silica or polymer encapsulation layer. The SERS nanoparticle tags are capable of providing detailed spectroscopic information and are much brighter than semiconductor quantum dots in the near-infrared spectral window. These properties have raised new opportunities for multiplexed molecular diagnosis and in vivo Raman spectroscopy and imaging.  相似文献   

2.
The mechanism of surface‐enhanced Raman spectroscopy (SERS) is not very clear in view of the magnitude of the contribution of electromagnetic factor as well as the chemical mechanism. This report presents the extent of adsorption at different temperatures in terms of signal enhancements in SERS employing silver nanoparticles (AgNPs) of various shapes as substrate and dye molecules, crystal violet or Rhodamine 6G, as model Raman probes. Initially, the SERS signal increases with increasing temperature until a maximum intensity is reached, before it gradually decreases with increasing temperature. This trend is independent of the shape of the Raman substrates and probes. However, the temperature at which maximum intensity is obtained may depend upon the nature of the Raman probe. The energetics involved in the chemisorption process between dye molecules and AgNPs were determined through isothermal titration calorimetry and their implications for the observed SERS signals were assessed. The maximum heat change occurred at the temperature at which the maximum signal enhancement in SERS was obtained and the enhanced interaction at optimum temperature was confirmed by absorption spectroscopy.  相似文献   

3.
Stable and efficient silver substrates for SERS spectroscopy   总被引:1,自引:0,他引:1  
Silver substrates have been obtained, by depositing silver colloidal nanoparticles on a roughened silver plate treated with 1,10-phenanthroline, and checked by means of AFM microscopy and Raman spectroscopy. The ligand molecules are located between two silver substrates and undergo the SERS (Surface Enhanced Raman Scattering) enhancement of both the roughened silver plate and the silver colloidal layer deposited on it. These SERS-active substrates, which show the advantages of being stable with respect to the metal colloidal suspensions, along with an easy and reproducible preparation, can be very useful for catalytic and analytical applications of the SERS spectroscopy.  相似文献   

4.
In order to produce silica/polyelectrolyte hybrid materials the adsorption of the polyelectrolyte poly(vinyl formamide-co-vinyl amine), P(VFA-co-VAm) was investigated. The adsorption of the P(VFA-co-VAm) from an aqueous solution onto silica surface is strongly influenced by the pH value and ionic strength of the aqueous solution, as well as the concentration of polyelectrolyte. The adsorption of the positively charged P(VFA-co-VAm) molecules on the negatively charged silica particles offers a way to control the surface charge properties of the formed hybrid material. Changes in surface charges during the polyelectrolyte adsorption were studied by potentiometric titration and electrokinetic measurements. X-ray photoelectron spectroscopy (XPS) was employed to obtain information about the amount of the adsorbed polyelectrolyte and its chemical structure. The stability of the adsorbed P(VFA-co-VAm) was investigated by extraction experiments and streaming potential measurements. It was shown, that polyelectrolyte layer is instable in an acidic environment. At a low pH value a high number of amino groups are protonated that increases the solubility of the polyelectrolyte chains. The solvatation process is able to overcompensate the attractive electrostatic forces fixing the polyelectrolyte molecules on the substrate material surface. Hence, the polyelectrolyte layer partially undergoes dissolving process.  相似文献   

5.
FT-Raman, FTIR and surface-enhanced Raman spectroscopy (SERS) are applied to the vibrational characterization of the antiviral and antiparkinsonian drug amantadine. SERS spectroscopy is employed for the first time for characterizing the interfacial behavior of this molecule and to study its interaction with colloidal silver. The comparison of SERS spectrum with the Raman spectra of amantadine in solid state and in aqueous solution reveals remarkable changes attributed to the interaction of the drug with the metal through the unprotonated amino group and the formation of a self-assembled amantadine layer on the metal surface. A tentative assignment of the obtained vibrational spectra is carried out on the basis of the vibrational spectra of the structurally related molecules adamantane and tert-buthylamine and the ab initio calculations accomplished for amantadine.  相似文献   

6.
The competition for binding and charge‐transfer (CT) from the nitrogen containing heterocycle pyrimidine to either silver or to water in surface enhanced Raman spectroscopy (SERS) is discussed. The correlation between the shifting observed for vibrational normal modes and CT is analyzed both experimentally using Raman spectroscopy and theoretically using electronic structure theory. Discrete features in the Raman spectrum correspond to the binding of either water or silver to each of pyrimidine's nitrogen atoms with comparable frequency shifts. Natural bond orbital (NBO) calculations in each chemical environment reveal that the magnitude of charge transfer from pyrimidine to adjacent silver atoms is only about twice that for water alone. These results suggest that the choice of solvent plays a role in determining the vibrational frequencies of nitrogen containing molecules in SERS experiments.  相似文献   

7.
赵乔  逯丹凤  陈晨  祁志美 《物理化学学报》2014,30(12):2335-2341
采用溶胶-凝胶分子模板法在50 nm厚金膜表面制备约40 nm厚介孔二氧化硅(MPS)薄膜,然后在MPS薄膜表面静电自组装金纳米粒子(GNP)单层膜,形成的多层膜结构用作表面增强拉曼散射(SERS)基底.利用扫描电镜观测到MPS薄膜具有表面开口多孔结构,有助于小分子向薄膜内快速扩散.基于时域有限差分(FDTD)方法对电场分布的仿真结果指出,在表面等离子体共振(SPR)条件下分布于金膜与GNP之间的消逝场显著增强.由于空间重叠,该增强场能够高效激发MPS内富集的小分子拉曼信号,产生的拉曼信号还可免受金属作用的干扰.利用Kretschmann结构和尼罗蓝(NB)拉曼活性分子测试了Au/MPS/GNP基底在785 nm激发波长下的SERS效果,并与Au/GNP基底进行了比较.结果表明,在SPR条件下,Au/MPS/GNP基底能够导致较强的定向和背向拉曼信号,而且在586 cm-1处的背向拉曼信号强度是Au/GNP基底的40倍,这归功于MPS薄膜.进一步测试表明背向拉曼信号强度与NB浓度成正相关.这意味着Au/MPS/GNP基底具有良好的半定量检测本领.  相似文献   

8.
Surface plasmon resonances (SPRs) have been found to promote chemical reactions. In most oxidative chemical reactions oxygen molecules participate and understanding of the activation mechanism of oxygen molecules is highly important. For this purpose, we applied surface‐enhanced Raman spectroscopy (SERS) to find out the mechanism of SPR‐assisted activation of oxygen, by using p‐aminothiophenol (PATP), which undergoes a SPR‐assisted selective oxidation, as a probe molecule. In this way, SPR has the dual function of activating the chemical reaction and enhancing the Raman signal of surface species. Both experiments and DFT calculations reveal that oxygen molecules were activated by accepting an electron from a metal nanoparticle under the excitation of SPR to form a strongly adsorbed oxygen molecule anion. The anion was then transformed to Au or Ag oxides or hydroxides on the surface to oxidize the surface species, which was also supported by the heating effect of the SPR. This work points to a promising new era of SPR‐assisted catalytic reactions.  相似文献   

9.
By in situ reduction of Ag+ ions pre‐dispersed inside thermosensitive microspheres of poly[(N‐isopropylacrylamide)‐co‐(methacrylic acid)] (P(NIPAM‐co‐MAA)), a 3D copolymer‐supported network of silver nanoparticles is created and extensively characterized by surface‐enhanced Raman scattering (SERS). The effective dispersion and the suitable density of the silver nanoparticles in the composite microspheres are demonstrated by the thermal‐induced SERS signal and its high reproducibility during thermocycling. When the temperature of the system increases above 32 °C, spatial separation of the silver nanoparticles decreases and the numbers of Ag nanoparticles and P(NIPAM‐co‐MAA) microspheres under illumination spot increase as a result of the shrinkage of the P(NIPAM‐co‐MAA) chains, leading to the ramp of the SERS effect. By means of the high reversibility of the thermosensitive phase transition of the P(NIPAM‐co‐MAA) microspheres, SERS activity of the silver nanoparticle network embedded in the microsphere can be well controlled by thermal‐induced variation of special separation.

  相似文献   


10.
赵乔  逯丹凤  陈晨  祁志美 《物理化学学报》2015,30(12):2335-2341
采用溶胶-凝胶分子模板法在50 nm 厚金膜表面制备约40 nm 厚介孔二氧化硅(MPS)薄膜, 然后在MPS薄膜表面静电自组装金纳米粒子(GNP)单层膜, 形成的多层膜结构用作表面增强拉曼散射(SERS)基底.利用扫描电镜观测到MPS薄膜具有表面开口多孔结构, 有助于小分子向薄膜内快速扩散. 基于时域有限差分(FDTD)方法对电场分布的仿真结果指出, 在表面等离子体共振(SPR)条件下分布于金膜与GNP之间的消逝场显著增强. 由于空间重叠, 该增强场能够高效激发MPS内富集的小分子拉曼信号, 产生的拉曼信号还可免受金属作用的干扰. 利用Kretschmann 结构和尼罗蓝(NB)拉曼活性分子测试了Au/MPS/GNP基底在785 nm激发波长下的SERS效果, 并与Au/GNP基底进行了比较. 结果表明, 在SPR条件下, Au/MPS/GNP基底能够导致较强的定向和背向拉曼信号, 而且在586 cm-1处的背向拉曼信号强度是Au/GNP基底的40 倍, 这归功于MPS薄膜. 进一步测试表明背向拉曼信号强度与NB浓度成正相关. 这意味着Au/MPS/GNP基底具有良好的半定量检测本领.  相似文献   

11.
In situ vibrational spectroscopy can provide molecular-level mechanistic insights missing from purely electrochemical measurements. Surface enhanced Raman spectroscopy (SERS) is a particularly promising method and is used in aqueous and nonaqueous studies of a variety of electrode reactions. Enhancement of the weak Raman signal is achieved by structuring the electrode surface or by use of SERS probes. This review article highlights the recent use of SERS to study several important electrode reactions: oxygen reduction and evolution, carbon monoxide oxidation and carbon dioxide reduction and the electrocatalytic oxidation of small organic molecules such as formic acid.  相似文献   

12.
A biocompatible, seed-mediated synthesis of monodisperse ~60 nm gold nanostars, followed by hydrophilic stabilization with ethylene glycol-modified Raman reporter molecules, is presented. Their application as SERS labels for imaging of the tumor suppressor p63 in prostate biopsies by immuno-SERS microscopy is demonstrated.  相似文献   

13.
In this contribution, the great potential of surface enhanced Raman spectroscopy (SERS) in a lab-on-a-chip (LOC) device for the detection of analyte molecules in a complex environment is demonstrated. Using LOC-SERS, the enzyme activity of thiopurine S-methyltransferase (TPMT) is analysed and identified in lysed red blood cells. The conversion of 6-mercaptopurine to 6-methylmercaptopurine catalysed by TPMT is observed as it gives evidence for the enzyme activity. Being able to determine the TPMT activity before starting a treatment using 6-mercaptopurine, an optimized dosage can be applied to each patient and serious toxicity appearing within thiopurine treatment will be prevented.  相似文献   

14.
We report herein a simple, inexpensive fabrication methodology of salt microwells, and define the utility of the latter as nanoparticle containers for highly sensitive surface‐enhanced Raman scattering (SERS) studies. AFM characterization of Ag and Au loaded salt microwells reveal the ability to contain favorable nanostructures such as nanoparticle dimers, which can significantly enhance the Raman intensity of molecules. By performing diffraction‐limited confocal Raman microscopy on salt microwells, we show high sensitivity and fidelity in the detection of dyes, peptides, and proteins, as a proof of our concept. The SERS limit of detection (accumulation time of 1 s) for rhodamine B and TAT contained in salt mircowells is 10 pM and 1 nM , respectively. The Raman characterization measurements of salt microwells with three different laser lines (532 nm, 632.81 nm, 785 nm) reveal low background intensity and high signal‐to‐noise ratio upon nanoparticle loading, which makes them suitable for enhanced Raman detection. SERS mapping of these sub‐femtoliter containers show spatial confinement of the relevant analyte to a few microns, which make them potential candidates for microscale bioreactors.  相似文献   

15.
An ultrasensitive surface‐enhanced Raman spectroscopy (SERS) sensor based on rolling‐circle amplification (RCA)‐increased “hot‐spot” was developed for the detection of thrombin. The sensor contains a SERS gold nanoparticle@Raman label@SiO2 core‐shell nanoparticle probe in which the Raman reporter molecules are sandwiched between a gold nanoparticle core and a thin silica shell by a layer‐by‐layer method. Thrombin aptamer sequences were immobilized onto the magnetic beads (MBs) through hybridization with their complementary strand. In the presence of thrombin, the aptamer sequence was released; this allowed the remaining single‐stranded DNA (ssDNA) to act as primer and initiate in situ RCA reaction to produce long ssDNAs. Then, a large number of SERS probes were attached on the long ssDNA templates, causing thousands of SERS probes to be involved in each biomolecular recognition event. This SERS method achieved the detection of thrombin in the range from 1.0×10?12 to 1.0×10?8 M and a detection limit of 4.2×10?13 M , and showed good performance in real serum samples.  相似文献   

16.
To combine temperature and pH sensitive capabilities, N-isopropylmaleamic acid (NIPMMA), having isopropylamide group and weakly acidic group (–COOH), was synthesized and used as a precursor for fabrication of temperature and pH sensitive hydrogels. In this paper, a new class of intelligent hydrogel with pH and temperature sensitivity originated from only one precursor (NIPMMA) was designed and demonstrated. Resultant poly(NIPMMA-co-acrylonitrile) [P(NIPMMA-co-AN)] hydrogels were characterized by Fourier transform infrared spectroscopy for structural determination and scanning electron microscope for morphology observation. Their temperature and pH sensitive behaviors were also examined in detail. The data obtained exhibited that the magnitude of sensitive properties of P(NIPMMA-co-AN) hydrogels depended on the composition ratio of two precursors. By increasing the content of NIPMMA, the temperature and pH sensitive capabilities of P(NIPMMA-co-AN) hydrogels were improved correspondingly since AN has no sensitivity upon temperature or pH changes.  相似文献   

17.
A simple and sensitive method, based on surface-enhanced Raman scattering (SERS), for immunoassay and label-free protein detection is reported. A series of bowl-shaped silver cavity arrays were fabricated by electrodeposition using a self-assembled polystyrene spheres template. The reflection spectra of these cavity arrays were recorded as a function of film thickness, and then correlated with SERS enhancement using sodium thiophenolate as the probe molecule. The results reveal that SERS enhancement can be maximized when the frequency of both the incident laser and the Raman scattering approach the frequency of the localized surface plasmon resonance. The optimized array was then used as the bottom layer of a silver nanoparticle–protein–bowl-shaped silver cavity array sandwich. The second layer of silver was introduced by the interactions between the proteins in the middle layer of the sandwich architecture and silver nanoparticles. Human IgG bound to the surface of this microcavity array can retain its recognition function. With the Raman reporter molecules labeled on the antibody, a detection limit down to 0.1 ng mL?1 for human IgG is easily achieved. Furthermore, the SERS spectra of label-free proteins (catalase, cytochrome C, avidin and lysozyme) from the assembled sandwich have excellent reproducibility and high quality. The results reveal that the proposed approach has potential for use in qualitative and quantitative detection of biomolecules.
Schematic diagram of sandwich structure for labelled and label-free protein detection.  相似文献   

18.
采用溶胶-水热法制备了不同尺寸的SnO2纳米粒子, 并将其作为表面增强拉曼散射(Surface-enhanced Raman scattering, SERS)活性基底, 重点探讨了表面缺陷能级与SERS性能的关系. 观察到4-巯基苯甲酸(4-MBA)吸附在150 ℃水热合成的SnO2纳米粒子上的SERS 信号最强, 随着在空气中煅烧温度的升高, SERS信号逐渐减弱. 分别用透射电子显微镜、 紫外-可见光谱、 荧光光谱、 X射线衍射和X射线光电子能谱对SnO2纳米粒子进行了表征. 结果表明, SnO2纳米粒子的表面氧空位和缺陷等表面性质在增强拉曼散射性能中发挥着重要的作用, 表面氧空位和缺陷等含量越高其SERS信号就越强.  相似文献   

19.
We report on silver–gold core-shell nanostructures that contain Methylene Blue (MB) at the gold–silver interface. They can be used as reporter molecules in surface-enhanced Raman scattering (SERS) labels. The labels are stable and have strong SERS activity. TEM imaging revealed that these nanoparticles display bright and dark stripe structures. In addition, these labels can act as probes that can be detected and imaged through the specific Raman signatures of the reporters. We show that such SERS probes can identify cellular structures due to enhanced Raman spectra of intrinsic cellular molecules measured in the local optical fields of the core-shell nanostructures. They also provide structural information on the cellular environment as demonstrated for these nanoparticles as new SERS-active and biocompatible substrates for imaging of live cells.
Figure
The synthesis of MB embedded Ag/Au CS NPs ,and the results of these NPs were used in probing and imaging live cells as SERS labels  相似文献   

20.
Comparatively few studies have explored the ability of Raman spectroscopy for the quantitative analysis of microbial secondary metabolites in fermentation broths. In this study we investigated the ability of Raman spectroscopy to differentiate between different penicillins and to quantify the level of penicillin in fermentation broths. However, the Raman signal is rather weak, therefore the Raman signal was enhanced using surface enhanced Raman spectroscopy (SERS) employing silver colloids. It was difficult by eye to differentiate between the five different penicillin molecules studied using Raman and SERS spectra, therefore the spectra were analysed by multivariate cluster analysis. Principal components analysis (PCA) clearly showed that SERS rather than the Raman spectra produced reproducible enough spectra to allow for the recovery of each of the different penicillins into their respective five groups. To highlight this further the first five principal components were used to construct a dendrogram using agglomerative clustering, and this again clearly showed that SERS can be used to identify which penicillin molecule was being analysed, despite their molecular similarities. With respect to the quantification of penicillin G it was shown that Raman spectroscopy could be used to quantify the amount of penicillin present in solution when relatively high levels of penicillin were analysed (>50 mM). By contrast, the SERS spectra showed reduced fluorescence, and improved signal to noise ratios from considerably lower concentrations of the antibiotic. This could prove to be advantageous in industry for monitoring low levels of penicillin in the early stages of antibiotic production. In addition, SERS may have advantages for quantifying low levels of high value, low yield, secondary metabolites in microbial processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号