首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The synthesis and complete characterization of functional, highly Lewis acidic tris(pentafluoroethyl)silanes as well as tetrakis(perfluoroalkyl)silanes Si(C2F5)4 and Si(C2F5)3CF3 by direct fluorination is described. The reaction of SiCl4 with LiC2F5 invariably affords (pentafluoroethyl)fluorosilicates. To avoid silicate formation by fluoride transfer from LiC2F5 the Lewis acidity of the silane has to be decreased by electron‐donating substituents, such as dialkylamino groups. The easily accessible Si(C2F5)3NEt2 is a valuable precursor for a series of tris(pentafluoroethyl)silanes.  相似文献   

2.
The synthesis and properties of [Ph 2 p-TolSi]2, [Ph 2 p-TolSi]2SiPh 2, [Ph 3 Si]2Si(p-Tol)2, [Ph 2 p-TolSi]2Si(p-Tol)2 and (SiPh 3)2SiH2 are described. The silanes are identified using IR,Ra- and29Si-NMR-spectroscopy.
  相似文献   

3.
Methods for syntheses of new polyfluorinated compounds, viz., silanes containing substituents CF3CF2CF2C(CF3)2(CH2)3 (RF) at the silicon atom and 1,3,5-tris(RF)-1,3,5-trimethylcyclotrisiloxane that can be used for the synthesis of fluorocontaining oligo- and polysiloxanes of different structure, were developed. The polymerization of cyclotrisiloxane in the presence of 1,3-divinyltetramethyldisiloxane gave linear oligomers, whose chain contain -(RF)Si(Me)O- units.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2133–2136, October, 2004.  相似文献   

4.
Trialkynyl(vinyl)silanes CH2?CH? Si(C?C? R)3 (R = Bu, Ph, p‐tolyl) were prepared and treated with 9‐borabicyclo[3.3.1]nonane (9‐BBN). Consecutive 1,2‐hydroboration and intramolecular 1,1‐carboboration reactions (each requires different reaction conditions) were studied. 1,2‐Hydroboration of the Si? vinyl group takes place at ambient temperature (23°C in tetrahydrofuran), followed by intramolecular 1,1‐vinylboration to give 1‐silacyclopent‐2‐ene derivatives, bearing still two alkynyl functions at the silicon atom. Further treatment with a second equivalent of 9‐BBN affords 1‐alkenyl‐1‐(alkynyl)‐1‐silacyclopent‐2‐ene derivatives. These undergo intramolecular 1,1‐vinylboration to give 4‐silaspiro[3.4]octa‐1,5‐dienes bearing the boryl groups at 2 and 6 positions. Protodeborylation of all new compounds (intermediates and final products) using acetic acid in slight excess afforded corresponding silanes including spirosilanes. All compounds were characterized using multinuclear NMR spectroscopy (1H, 11B, 13C, 29Si) in solution state. Solid‐state structures for one of the trialkynyl(vinyl)silanes (R = p‐tolyl) and one of the 1‐silacyclopent‐2‐ene derivatives (R = Ph) were confirmed using X‐ray diffraction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
As recently shown, the introduction of pentafluoroethyl functionalities into silicon compounds is of general interest due to an enhanced Lewis acidity of the resulting species. By this means, the synthesis of previously inaccessible hypervalent silicon derivatives is enabled. 1 While an easy access to tris(pentafluoroethyl)silanes has already been published, synthetic strategies for the selective preparation of bis derivatives are yet unknown. In this contribution, a convenient protocol for the synthesis of functional bis(pentafluoroethyl)silicon compounds is presented. These compounds represent precursors for the synthesis of pentafluoroethylated polysiloxanes. 2 Furthermore, they prove to be resistant to oxonium cations, which is a key feature for the preparation of stable pentafluoroethylsilic acids. 3 Treatment of dichlorodiphenoxysilane with in situ generated pentafluoroethyl lithium leads to the corresponding bis(pentafluoroethyl)silane in high yields. (C2F5)2Si(OPh)2 serves as a starting material for further functionalized bis(pentafluoroethyl)silanes. These silanes have been isolated and their reactivity towards N bases studied. The pronounced Lewis acidity of the obtained compounds has been documented by the formation of octahedral adducts with nitrogen donors such as 1,10‐phenanthroline and acetonitrile.  相似文献   

6.
This work describes the synthesis and full characterization of a series of GaCl3 and B(C6F5)3 adducts of diazenes R1?N?N?R2 (R1=R2=Me3Si, Ph; R1=Me3Si, R2=Ph). Trans‐Ph?N?N?Ph forms a stable adduct with GaCl3, whereas no adduct, but instead a frustrated Lewis acid–base pair is formed with B(C6F5)3. The cis‐Ph?N?N?Ph ? B(C6F5)3 adduct could only be isolated when UV light was used, which triggers the isomerization from trans‐ to cis‐Ph?N?N?Ph, which provides more space for the bulky borane. Treatment of trans‐Ph?N?N?SiMe3 with GaCl3 led to the expected trans‐Ph?N?N?SiMe3 ? GaCl3 adduct but the reaction with B(C6F5)3 triggered a 1,2‐Me3Si shift, which resulted in the formation of a highly labile iso‐diazene, Me3Si(Ph)N?N; stabilized as a B(C6F5)3 adduct. Trans‐Me3Si?N?N?SiMe3 forms a labile cis‐Me3Si?N?N?SiMe3 ? B(C6F5)3 adduct, which isomerizes to give the transient iso‐diazene species (Me3Si)2N?N ? B(C6F5)3 upon heating. Both iso‐diazene species insert easily into one B?C bond of B(C6F5)3 to afford hydrazinoboranes. All new compounds were fully characterized by means of X‐ray crystallography, vibrational spectroscopy, CHN analysis, and NMR spectroscopy. All compounds were further investigated by DFT and the bonding situation was assessed by natural bond orbital (NBO) analysis.  相似文献   

7.
While alkyl-substituted siloxanes are widely known, virtually nothing is known about perfluoroalkyl siloxanes and their congener species, the silanols and silanolates. We recently reported on the tris(pentafluoroethyl)silanide ion, [Si(C2F5)3], which features Lewis amphoteric character deriving from the pentafluoroethyl substituents and their strong electron-withdrawing properties. Transferring this knowledge, we investigated the Lewis amphoteric behavior of the tris(pentafluoroethyl)silanolate, [Si(C2F5)3O]. In order to examine such Lewis amphoteric behavior, we first developed a strategy for the synthesis of the corresponding silanol Si(C2F5)3OH, which readily condenses at room temperature to the hexakis(pentafluoroethyl)disiloxane, (C2F5)3SiOSi(C2F5)3. Deprotonation of Si(C2F5)3OH employing a sterically demanding phosphazene base allows the characterization of the first example of a dimeric triorganosilanolate: the dianionic hexakis(pentafluoroethyl)disilanolate, [{Si(C2F5)3O}2]2−, implies Lewis amphoteric character of the monomeric [Si(C2F5)3O] anion.  相似文献   

8.
Given its earth abundance, silicon is ideal for constructing Lewis acids of use in catalysis or materials science. Neutral silanes were limited to moderate Lewis acidity, until halogenated catecholato ligands provoked a significant boost. However, catalytic applications of bis(perhalocatecholato)silanes were suffering from very poor solubility and unknown deactivation pathways. In this work, the novel per(trifluoromethyl)catechol, H2catCF3, and adducts of its silicon complex Si(catCF3)2 ( 1 ) are described. According to the computed fluoride ion affinity, 1 ranks among the strongest neutral Lewis acids currently accessible in the condensed phase. The improved robustness and affinity of 1 enable deoxygenations of aldehydes, ketones, amides, or phosphine oxides, and a carbonyl-olefin metathesis. All those transformations have never been catalyzed by a neutral silane. Attempts to obtain donor-free 1 attest to the extreme Lewis acidity by stabilizing adducts with even the weakest donors, such as benzophenone or hexaethyl disiloxane.  相似文献   

9.
N-heterocyclic nitrogen Lewis acids are a recent addition to the field of organic chemistry. Based on nitrenium cations, these acids where previously shown to generate Lewis adducts when combined with the appropriate Lewis bases. Herein, a triazinium-based Lewis acid was combined with tBu3P to generate a frustrated Lewis pair (FLP) capable of cleaving, for the first time, Si−H bonds in silanes. Whereas low yields were initially encountered owing to insufficient Lewis acidity, a new nitrenium-based Lewis acid was synthesized, and its superior Lewis acidity was experimentally and computationally confirmed. A FLP based on this acid cleaved the Si−H bond in PhSiH3, generating the triazane product in a quantitative yield. This unprecedented N−H triazane was fully characterized by multinuclear NMR techniques and single-crystal X-ray crystallography. A new class of compounds, N-H triazanes display the potential capacity to participate in hydride transfer reactions.  相似文献   

10.
Synthesis and Crystal Structures of NH4[Si(NH3)F5] and [Si(NH3)2F4] Single crystals of NH4[Si(NH3)F5] and [Si(NH3)2F4] are obtained by reaction of silicon powder with NH4HF2 in sealed Monel ampoules at 400°C. NH4[Si(NH3)F5] crystallizes with the tetragonal space group P4/n (no. 85) with a = 614.91(7) pm, c = 721.01(8) pm, Z = 2. Characteristic for the structure is the anionic octahedron [Si(NH3)F5]?. Si(NH3)2F4 crystallizes with the monoclinic space group P21/c (no. 14) with a = 506.9(1) pm, b = 728.0(1) pm, c = 675.9(1), β = 93,21(2)°, Z = 2. Trans-[Si(NH3)2F4] molecules are characteristic for this structure.  相似文献   

11.
A detailed quantum‐chemical study on the amine‐induced disproportionation reaction of perchlorinated silanes to neo‐Si5Cl12 is reported. The key intermediate in the resulting mechanistic scenario is a dichlorosilylene amine adduct, which is in tune with recent experimental findings. Yet, at variance with the generally accepted notion of silicon‐chain growth by concerted silylene insertion into Si?Cl bonds of lower silanes, the formation of neo‐Si5Cl12 follows more complex pathways. The reactivity is dominated by the Lewis–base character of the dichlorosilylene amine adduct and characterized by three elementary steps that bear close resemblance to the key elementary steps identified earlier for the chloride‐induced disproportionation of Si2Cl6. NBO and QTAIM analyses of the key reactive species SiCl2 ? NMe3 and SiCl3? provide a rationale for these striking similarities.  相似文献   

12.
The potential of a dicationic strontium ansa-arene complex for Lewis acid catalysis has been explored. The key to its synthesis was a simple salt metathesis from SrI2 and 2 Ag[Al(ORF)4], giving the base-free strontium-perfluoroalkoxyaluminate Sr[Al(ORF)4]2 (ORF=OC(CF3)3). Addition of an ansa-arene yielded the highly Lewis acidic, dicationic strontium ansa-arene complex. In preliminary experiments, the complex was successfully applied as a catalyst in CO2-reduction to CH4 and a surprisingly controlled isobutylene polymerization reaction.  相似文献   

13.
The super acidity of the unsolvated Al(C6F5)3 enabled isolation of the elusive silane–alane complex [Si H⋅⋅⋅Al], which was structurally characterized by spectroscopic and X‐ray diffraction methods. The Janus‐like nature of this adduct, coupled with strong silane activation, effects multifaceted frustrated‐Lewis‐pair‐type catalysis. When compared with the silane–borane system, the silane–alane system offers unique features or clear advantages in the four types of catalytic transformations examined in this study, including: ligand redistribution of tertiary silanes into secondary and quaternary silanes, polymerization of conjugated polar alkenes, hydrosilylation of unactivated alkenes, and hydrodefluorination of fluoroalkanes.  相似文献   

14.
The known boranes (R(Me3Si)N)2BF (R=Me3Si 1 , tBu 2 , C6F5 3 , o-tol 4 , Mes 5 , Dipp 6 ) and borinium salts (R(Me3Si)N)2B][B(C6F5)4] (R=Me3Si 7 , tBu 8 ) are prepared and fully characterized. Compound 7 is shown to react with phosphines to generate [R3PSiMe3]+ and [R3PH]+ (R=Me, tBu). Efforts to generate related borinium cations via fluoride abstraction from (R(Me3Si)N)2BF (R=C6F5 3 , o-tol 4 , Mes 5 ) gave complex mixtures suggesting multiple reaction pathways. However for R=Dipp 6 , the species [(μ-F)(SiMe2N(Dipp))2BMe][B(C6F5)4] was isolated as the major product, indicating methyl abstraction from silicon and F/Me exchange on boron. These observations together with state-of-the-art DFT mechanistic studies reveal that the trimethylsilyl-substituents do not behave as ancillary subsitutents but rather act as sources of proton, SiMe3 and methyl groups.  相似文献   

15.
The super acidity of the unsolvated Al(C6F5)3 enabled isolation of the elusive silane–alane complex [Si? H???Al], which was structurally characterized by spectroscopic and X‐ray diffraction methods. The Janus‐like nature of this adduct, coupled with strong silane activation, effects multifaceted frustrated‐Lewis‐pair‐type catalysis. When compared with the silane–borane system, the silane–alane system offers unique features or clear advantages in the four types of catalytic transformations examined in this study, including: ligand redistribution of tertiary silanes into secondary and quaternary silanes, polymerization of conjugated polar alkenes, hydrosilylation of unactivated alkenes, and hydrodefluorination of fluoroalkanes.  相似文献   

16.
The research area of perfluoroalkylsilanes is still in its infancy. Although there are already many examples of difluorotriorganylsilicates, the first example of a completely characterized trifluorotriorganylsilicate is presented, the dianion [Si(C2F5)3F3]2?. The strongly electron‐withdrawing influence of the pentafluoroethyl groups appears to be a fundamental cause of the stability of this compound. This dianion is also the first structurally characterized example of a tris(pentafluoroethyl)silicon compound. The synthesis and complete characterization of [PPh4]2[Si(C2F5)3F3] and [PPh4][Si(C2F5)3F2] along with the precursor [H(OEt2)2][Si(C2F5)3F2] was achieved from SiCl4 and LiC2F5.  相似文献   

17.
The enthalpies of formation of the addition compounds F4Si(py)2, Cl4Si(py)2, Br4Si(py)2 and I4Si(py)4 have been measured calorimetrically by two different ways (see table 1). It was not possible to confirm enthalpy data published in7, 8. The sequence SiF44~SiBr4>SiI4(?) is proposed for the acceptor power of the silicon tetrahalides towards pyridine.  相似文献   

18.
The first silicon analogues of carbonic (carboxylic) esters, the silanoic thio‐, seleno‐, and tellurosilylesters 3 (Si?S), 4 (Si?Se), and 5 (Si?Te), were prepared and isolated in crystalline form in high yield. These thermally robust compounds are easily accessible by direct reaction of the stable siloxysilylene L(Si:)OSi(H)L′ 2 (L=HC(CMe)2[N(aryl)2], L′=CH[(C?CH2)‐CMe][N(aryl)]2; aryl=2,6‐iPr2C6H3) with the respective elemental chalcogen. The novel compounds were fully characterized by methods including multinuclear NMR spectroscopy and single‐crystal X‐ray diffraction analysis. Owing to intramolecular N→Si donor–acceptor support of the Si?X moieties (X=S, Se, Te), these compounds have a classical valence‐bond N+–Si–X? resonance betaine structure. At the same time, they also display a relatively strong nonclassical Si?X π‐bonding interaction between the chalcogen lone‐pair electrons (nπ donor orbitals) and two antibonding Si? N orbitals (σ*π acceptor orbitals mainly located at silicon), which was shown by IR and UV/Vis spectroscopy. Accordingly, the Si?X bonds in the chalcogenoesters are 7.4 ( 3 ), 6.7 ( 4 ), and 6.9 % ( 5 ) shorter than the corresponding Si? X single bonds and, thus, only a little longer than those in electronically less disturbed Si?X systems (“heavier” ketones).  相似文献   

19.
The platinum complex [Pt(ItBuiPr′)(ItBuiPr)][BArF] interacts with tertiary silanes to form stable (<0 °C) mononuclear PtII σ‐SiH complexes [Pt(ItBuiPr′)(ItBuiPr)(η1‐HSiR3)][BArF]. These compounds have been fully characterized, including X‐ray diffraction methods, as the first examples for platinum. DFT calculations (including electronic topological analysis) support the interpretation of the coordination as an unusual η1‐SiH. However, the energies required for achieving a η2‐SiH mode are rather low, and is consistent with the propensity of these derivatives to undergo Si?H cleavage leading to the more stable silyl species [Pt(SiR3)(ItBuiPr)2][BArF] at room temperature.  相似文献   

20.
A series of triorganylsilyl(β‐dialkylaminoethoxy)silanes was prepared and characterized by elemental analysis, 1H, 13C, 29Si NMR and mass spectroscopy. Comparative study of 29Si resonance of newly synthesized compounds showed correlation between its value and substituent nature at the silicon atom, and is shifted upfield for β‐triorganyl(N,N‐dialkylaminoethoxy)silanes in comparison with corresponding methiodides, revealing weak NSi interaction for proper silanes. In vitro antitumour and antimicrobial properties were investigated. The biological activity data exhibited a marked enhancement of inhibitory activity on trialkylsilylation against tumour cell lines and all the test bacterial/fungal strains. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号