首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fast magic-angle spinning (MAS), frequency selective (FS) heteronuclear multiple quantum coherence (HMQC) experiments which function in an analogous manner to solution SOFAST HMQC NMR experiments, are demonstrated. Fast MAS enables efficient FS excitation of 1H solid-state NMR signals. Selective excitation and observation preserves 1H magnetization, leading to a significant shortening of the optimal inter-scan delay. Dipolar and scalar 1H{14N} FS HMQC solid-state NMR experiments routinely provide 4- to 9-fold reductions in experiment times as compared to conventional 1H{14N} HMQC solid-state NMR experiments. 1H{14N} FS resonance-echo saturation-pulse double-resonance (RESPDOR) allowed dipolar dephasing curves to be obtained in minutes, enabling the rapid determination of NH dipolar coupling constants and internuclear distances. 1H{14N} FS RESPDOR was used to assign multicomponent active pharmaceutical ingredients (APIs) as salts or cocrystals. FS HMQC also provided enhanced sensitivity for 1H{17O} and 1H{35Cl} HMQC experiments on 17O-labeled Fmoc-alanine and histidine hydrochloride monohydrate, respectively. FS HMQC and FS RESPDOR experiments will provide access to valuable structural constraints from materials that are challenging to study due to unfavorable relaxation times or dilution of the nuclei of interest.  相似文献   

2.
Proton spectroscopy in solid-state NMR on catalytic materials offers new opportunities in structural characterization, in particular of reaction products of catalytic reactions such as hydrogenation reactions. Unfortunately, the 1H NMR line widths in magic-angle spinning solid-state spectra are often broadened by an incomplete averaging of 1H-1H dipolar couplings. We herein discuss two model compounds, namely the H2-splitting products of two phosphane-borane Frustrated Lewis Pairs (FLPs), to study potentials and limitations of proton solid-state NMR experiments employing magic-angle spinning frequencies larger than 100 kHz at a static magnetic field strength of 20.0 T. The 1H lines are homogeneously broadened as illustrated by spin-echo decay experiments. We study two structurally similar materials which however show significant differences in 1H line widths which we explain by differences in their 1H-1H dipolar networks. We discuss the benefit of fast MAS experiments up to 110 kHz to detect the resonances of the H+/H pair in the hydrogenation products of FLPs.  相似文献   

3.
Metal-organic frameworks (MOFs) are an emerging class of porous materials with potential applications in a wide variety of fields. The knowledge about the detailed interactions between MOFs and guest molecules is critical for the understanding of their structure-property relationships at working conditions. In this review, recent advances for solid-state NMR studies of host–guest chemistry of MOFs in the application fields of gaseous adsorption, chemical separation, drug delivery, chemical sensor, and heterogeneous catalysis were briefly introduced. The adsorption property and dynamic behavior of adsorbed gases confined inside the MOFs channels were elucidated from variable-temperature (VT) solid-state NMR. Moreover, the detailed mechanism of gas-phase and liquid-phase adsorptive separations on MOFs adsorbents was uncovered on the basis of solid-state NMR measurements. Multi-nuclear 1H, 13C, 15N, and 31P MAS NMR was utilized to explore the interactions between drug molecules and MOFs at the atomic scale to monitor the controlled release process of drugs. Furthermore, the investigation of the interactions between guest molecules and MOFs in the application areas of chemical sensor, toxic chemicals removal, and catalysis using solid-state NMR was briefly discussed as well.  相似文献   

4.
A thorough review of 35/37Cl, 79/81Br, and 127I solid-state nuclear magnetic resonance (SSNMR) data is presented. Isotropic chemical shifts (CS), quadrupolar coupling constants, and other available information on the magnitude and orientation of the CS and electric field gradient (EFG) tensors for chlorine, bromine, and iodine in diverse chemical compounds is tabulated on the basis of over 200 references. Our coverage is through July 2005. Special emphasis is placed on the information available from the study of powdered diamagnetic solids in high magnetic fields. Our survey indicates a recent notable increase in the number of applications of solid-state quadrupolar halogen NMR, particularly 35Cl NMR, as high magnetic fields have become more widely available to solid-state NMR spectroscopists. We conclude with an assessment of possible future directions for research involving 35/37Cl, 79/81Br, and 127I solid-state NMR spectroscopy.  相似文献   

5.
Magic-angle-spinning (MAS) enhances sensitivity and resolution in solid-state nuclear magnetic resonance (NMR) measurements. MAS is obtained by aerodynamic levitation and drive of a rotor, which results in large centrifugal forces that may affect the physical state of soft materials, such as polymers, and subsequent solid-state NMR measurements. Here, we investigate the effects of MAS on the solid-state NMR measurements of a polymer electrolyte for lithium-ion battery applications, poly(ethylene oxide) (PEO) doped with the lithium salt LiTFSI. We show that MAS induces local chain ordering, which manifests itself as characteristic lineshapes with doublet-like splittings in subsequent solid-state 1 H, 7 Li, and 19 F static NMR spectra characterizing the PEO chains and solvated ions. MAS results in distributions of stresses and hence local chain orientations within the rotor, yielding distributions in the local magnetic susceptibility tensor that give rise to the observed NMR anisotropy and lineshapes. The effects of MAS were investigated on solid-state 7 Li and 19 F pulsed-field-gradient (PFG) diffusion and 7Li longitudinal relaxation NMR measurements. Activation energies for ion diffusion were affected modestly by MAS. 7Li longitudinal relaxation rates, which are sensitive to lithium-ion dynamics in the nanosecond regime, were essentially unchanged by MAS. We recommend that NMR researchers studying soft polymeric materials use only the spin rates necessary to achieve the desired enhancements in sensitivity and resolution, as well as acquire static NMR spectra after MAS experiments to reveal any signs of stress-induced local ordering.  相似文献   

6.
A series of six L-amino acid hydrochloride salts has been studied by 35/37Cl solid-state NMR spectroscopy (at 11.75 and 21.1 T) and complementary quantum chemical calculations. Analyses of NMR spectra acquired under static and magic-angle-spinning conditions for the six hydrochloride salts, those of aspartic acid, alanine, cysteine, histidine, methionine and threonine, allowed the extraction of information regarding the chlorine electric field gradient (EFG) and chemical shift tensors, including their relative orientation. Both tensors are found to be highly dependent on the local environment, with chlorine-35 quadrupolar coupling constants (CQ) ranging from -7.1 to 4.41 MHz and chemical shift tensor spans ranging from 60 to 100 ppm; the value of CQ for aspartic acid hydrochloride is the largest in magnitude observed to date for an organic hydrochloride salt. Quantum chemical calculations performed on cluster models of the chloride ion environment demonstrated agreement between experiment and theory, reproducing CQ to within 18%. In addition, the accuracy of the calculated values of the NMR parameters as a function of the quality of the input structure was explored. Selected X-ray structures were determined (L-Asp HCl; L-Thr HCl) or re-determined (L-Cys HCl.H2O) to demonstrate the benefits of having accurate crystal structures for calculations. The self-consistent charge field perturbation model was also employed and was found to improve the accuracy of calculated quadrupolar coupling constants, demonstrating the impact of the neighbouring ions on the EFG tensor of the central chloride ion. Taken together, the present work contributes to an improved understanding of the factors influencing 35/37Cl NMR interaction tensors in organic hydrochlorides.  相似文献   

7.
One key bottleneck of solid-state NMR spectroscopy is that 1H NMR spectra of organic solids are often very broad due to the presence of a strong network of dipolar couplings. We have recently suggested a new approach to tackle this problem. More specifically, we parametrically mapped errors leading to residual dipolar broadening into a second dimension and removed them in a correlation experiment. In this way pure isotropic proton (PIP) spectra were obtained that contain only isotropic shifts and provide the highest 1H NMR resolution available today in rigid solids. Here, using a deep-learning method, we extend the PIP approach to a second dimension, and for samples of L-tyrosine hydrochloride and ampicillin we obtain high resolution 1H-1H double-quantum/single-quantum dipolar correlation and spin-diffusion spectra with significantly higher resolution than the corresponding spectra at 100 kHz MAS, allowing the identification of previously overlapped isotropic correlation peaks.  相似文献   

8.
The X-ray structure and the solid-state NMR measurements, mainly 15N CPMAS of the labelled compound, allow to determine the static and dynamic properties of 3(5)-ethyl-5(3)-phenyl-1H-pyrazole. The compound is a tetramer formed by three 5-ethyl-3-phenyl-1H-pyrazole and one 3-ethyl-5-phenyl-1H-pyrazole tautomers in dynamic equilibrium with the complementary situation.  相似文献   

9.
Abstract

Variable temperature solid-state 13C NMR and differential scanning calorimetry were used to show that the toluene clathrate of t-butylcalix[4]arene undergoes a symmetry lowering phase transition at 248.0 K. 2H NMR was used to show that the high symmetry of the complex at room temperature is due to dynamic disorder of the toluene guest, which is most easily described as an axial rotor.  相似文献   

10.
A coordination study of Lu(III) has been carried out for the nitrate and perchlorate salts in aqueous mixtures of acetone-d6 and Freon-12 by1H,15N and35Cl NMR spectroscopy. At temperatures lower than –90°C, proton and ligand exchange are slow enough to permit the direct observation of1H resonance signals for coordinated and free water molecules, leading to an accurate measure of the Lu(III) hydration number. In perchlorate solution, in the absence of inner-shell ion-pairing, Lu(III) exhibits a maximum coordination number of six over the allowable concentration range of study, contrasting markedly with the report of values of six to nine or greater as determined by a similar NMR method. The absence of contact ion-pairing was confirmed by35Cl NMR chemical shift and linewidth measurements. Extensive ion-pairing was observed in the nitrate solutions as reflected by the lower Lu(III) hydration numbers of two to three in these systems, the observation of two coordinated water signals, and15N NMR signals for two complexes. The1H and15N NMR spectra and the hydration number could be accounted for by the presence of (H2O)4Lu(NO3)2+ and (H2O)2Lu(NO3) 2 1+ .  相似文献   

11.
Although having been described as a liquid in the literature for 41 years, 1,2‐bis[(pyridin‐2‐ylmethyl)sulfanyl]ethane, C14H16N2S2, (I), has now been obtained as monoclinic crystals via a new and convenient method of purification. Molecules of (I) are located on crystallographic inversion centres and are held together by C—H...N and C—H...S interactions, resulting in the formation of a three‐dimensional network structure. In addition, two polymorphs of the corresponding hydrochloride salt, 2‐[({2‐[(pyridin‐1‐ium‐2‐ylmethyl)sulfanyl]ethyl}sulfanyl)methyl]pyridin‐1‐ium dichloride, C14H18N2S22+·2Cl, (II) and (III), have been isolated. Molecules of (II) and (III) have similar conformations and are located on inversion centres. Both polymorphs form three‐dimensional networks through N—H...Cl, C—H...Cl and C—H...S interactions. The structure of (III) displays voids of 35 Å3.  相似文献   

12.
We report solid-state 35Cl NMR spectra in three hexachlorides, (NH4)2SeCl6, (NH4)2TeCl6 and Rb2TeCl6. The CQ(35Cl) quadrupole coupling constants in the three compounds were found to be 41.4±0.1 MHz, 30.3±0.1 MHz and 30.3±0.1 MHz, respectively, some of the largest CQ(35Cl) quadrupole coupling constants ever measured in polycrystalline powdered solids directly via 35Cl NMR spectroscopy. The 35Cl EFG tensors are axial in all three cases reflecting the C4v point group symmetry of the chlorine sites. 35Cl NMR experiments in these compounds were only made possible by employing the WURST-QCPMG pulse sequence in the ultrahigh magnetic field of 21.1 T. 35Cl NMR results agree with the earlier reported 35Cl NQR values and with the complementary plane-wave DFT calculations. The origin of the very large CQ(35Cl) quadrupole coupling constants in these and other main-group chlorides lies in the covalent-type chlorine bonding. The ionic bonding in the ionic chlorides results in significantly reduced CQ(35Cl) values as illustrated with triphenyltellurium chloride Ph3TeCl. The high sensitivity of 35Cl NMR to the chlorine coordination environment is demonstrated using tetrachlorohydroxotellurate hydrate K[TeCl4(OH)]?0.5H2O as an example. 125Te MAS NMR experiments were performed for tellurium compounds to support 35Cl NMR findings.  相似文献   

13.
Estuaries are key ecosystems with unique biodiversity and are of high economic importance. Along the estuaries, variations in environmental parameters, such as salinity and light penetration, can modify the characteristics of dissolved organic matter (DOM). Nevertheless, there is still limited information about the atomic-level transformations of DOM in this ecosystem. Solid-state NMR spectroscopy provides unique insights into the nature of functional groups in DOM. A major limitation of this technique is its lack of sensivity, which results in experimental time of tens of hours for the acquisition of 13C NMR spectra and generally precludes the observation of 15N nuclei for DOM. We show here how the sensitivity of solid-state NMR experiments on DOM of Seine estuary can be enhanced using dynamic nuclear polarization (DNP) under magic-angle spinning. This technique allows the acquisition of 13C NMR spectra of these samples in few minutes, instead of hours for conventional solid-state NMR. Both conventional and DNP-enhanced 13C NMR spectra indicate that the 13C local environments in DOM are not strongly modified along the Seine estuary. Furthermore, the sensitivity gain provided by the DNP allows the detection of 15N NMR signal of DOM, in spite of the low nitrogen content. These spectra reveal that the majority of nitrogen is in the amide form in these DOM samples and show an increased disorder around these amide groups near the mouth of the Seine.  相似文献   

14.
The typical linewidths of 1H NMR spectra of powdered organic solids at 111 kHz magic-angle spinning (MAS) are of the order of a few hundred Hz. While this is remarkable in comparison to the tens of kHz observed in spectra of static samples, it is still the key limit to the use of 1H in solid-state NMR, especially for complex systems. Here, we demonstrate a novel strategy to further improve the spectral resolution. We show that the anti-z-COSY experiment can be used to reduce the residual line broadening of 1H NMR spectra of powdered organic solids. Results obtained with the anti-z-COSY sequence at 100 kHz MAS on thymol, β-AspAla, and strychnine show an improvement in resolution of up to a factor of two compared to conventional spectra acquired at the same spinning rate.  相似文献   

15.
制备了4-苯基-1-(吡啶-2-亚甲基)氨基脲(PPMSC)和4-苯基-1-(吡啶-2-亚甲基)氨基硫脲(PPMTC).用元素分析、MS、1HNMR、UV吸收光谱、X射线单晶衍射和固体CD光谱等对其进行了表征.晶体结构数据显示PPMSC属于Sohncke P212121空间群,单个分子之间通过氢键形成一个一维螺旋链状结构,沿a轴形成左手螺旋结构.固体CD光谱和重结晶实验证明,PPMSC手性晶体的形成是结晶诱导的绝对不对称合成.PPMTC的固体CD光谱和重结晶实验具有与PPMSC类似现象.  相似文献   

16.
The interactions of ionic liquids (IL) with solvents usually used in liquid-state nuclear magnetic resonance (NMR) spectroscopy are studied. The 1H- and 13C-NMR chemical shift values of 1-n-butyl-3-methyl (BM)- and 1-ethyl-3-methyl (EM)-substituted imidazolium (IM) -chlorides (Cl) and -acetates (Ac) are determined before and after diluting with deuterated solvents (DMSO-d6, D2O, CD3OD, and CDCl3). The dilution offers structural modifications of the IL due to the solvents capacity to ionization. For further investigation of highly viscous cellulose dopes made of imidazolium-based IL, solid-state NMR spectroscopy enables the reproducibility of liquid-state NMR data of pure IL. The correlation of liquid- and solid-state NMR is shown on EMIM-Ac and cellulose/EMIM-Ac dope (10 wt %).  相似文献   

17.
Pyrazolylboratomolybdenum complexes containing the η2-CSNMe2 ligand have been prepared by treating the appropriate carbonylmetallate anion with Me2NCSCl. The structure of pzB(pz)3Mo(CO)22-CSNMe2) (IIIb) has been established by X-ray crystallographic methods. The 1H and 13C NMR spectra of IIIb show evidence for two separate intramolecular dynamic processes in solution. Complex IIIb can be alkylated at the sulphur atom and forms 1/1 complexes with mercuric halides.  相似文献   

18.
We report synthesis and solid-state 17O NMR characterization of α-d-glucose for which all six oxygen atoms are site-specifically 17O-labeled. Solid-state 17O NMR spectra were recorded for α-d-glucose/NaCl/H2O (2/1/1) cocrystals under static and magic-angle-spinning (MAS) conditions at five moderate, high, and ultrahigh magnetic fields: 14.1, 16.4, 18.8, 21.1, and 35.2 T. Complete 17O chemical shift (CS) and quadrupolar coupling (QC) tensors were determined for each of the six oxygen-containing functional groups in α-d-glucose. Paramagnetic Cu(ii) doping was found to significantly shorten the spin–lattice relaxation times for both 1H and 17O nuclei in these compounds. A combination of the paramagnetic Cu(ii) doping, new CPMAS CryoProbe technology, and apodization weighted sampling led to a sensitivity boost for solid-state 17O NMR by a factor of 6–8, which made it possible to acquire high-quality 2D 17O multiple-quantum (MQ) MAS spectra for carbohydrate compounds. The unprecedented spectral resolution offered by 2D 17O MQMAS spectra permitted detection of a key structural difference for a single hydrogen bond between two types of crystallographically distinct α-d-glucose molecules. This work represents the first case where all oxygen-containing functional groups in a carbohydrate molecule are site-specifically 17O-labeled and fully characterized by solid-state 17O NMR. Gauge Including Projector Augmented Waves (GIPAW) DFT calculations were performed to aid 17O and 13C NMR signal assignments for a complex crystal structure where there are six crystallographically distinct α-d-glucose molecules in the asymmetric unit.

We report the first “total synthesis” of 17O-labeled d-glucose and its solid-state 17O NMR characterization with unprecedented sensitivity and resolution.  相似文献   

19.
Experimental 13C solid-state magic-angle spinning (MAS) Nuclear Magnetic Resonance (NMR) as well as Density-Functional Theory (DFT) gauge-including projector augmented wave (GIPAW) calculations were used to probe disorder and local mobility in diethylcarbamazine citrate, (DEC)+(citrate). This compound has been used as the first option drug for the treatment of filariasis, a disease endemic in tropical countries and caused by adult worms of Wuchereria bancrofti, which is transmitted by mosquitoes. We firstly present 2D 13C─1H dipolar-coupling-mediated heteronuclear correlation spectra recorded at moderate spinning frequency, to explore the intermolecular interaction between DEC and citrate molecules. Secondly, we investigate the dynamic behavior of (DEC)+(citrate) by varying the temperature and correlating the experimental MAS NMR results with DFT GIPAW calculations that consider two (DEC)+ conformers (in a 70:30 ratio) for crystal structures determined at 293 and 235 K. Solid-state NMR provides insights on slow exchange dynamics revealing conformational changes involving particularly the DEC ethyl groups.  相似文献   

20.
Binding of chloride anion by protonated polyamines was investigated by 35Cl? NMR spectroscopy. The presence of protonated macro(poly)cyclic polyamines caused downfield shifts and significant line broadening of the 53Cl? NMR signals. 35Cl? NMR spectroscopy was used for complex-formation stoichiometry determination and revealed the formation of a binuclear chloride complex with the fully protonated ditopic hexaazamacrocyclic receptor 6 . 35Cl? NMR spectroscopy was also applied in competition experiments between Cl? and SO42? and demonstrated that the fully protonated macrocyclic hexaamine 4 forms a strong complex with SO4?2 with 1:1 stoichiometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号