首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chen  Yaoxia  Zhang  Wenwen  Ding  Yinghao  Liang  Chunhui  Shi  Yang  Hu  Zhi-Wen  Wang  Ling  Yang  Zhimou 《中国科学:化学(英文版)》2021,64(9):1554-1559
The creation of artificial enzymes to mimic natural enzymes remains a great challenge owing to the complexity of the structural arrangement of the essential amino acids in catalytic centers. In this study, we used the phosphatase-based enzyme-instructed self-assembly(EISA) to supervise artificial esterases' final structures and catalytic activities. We reported that peptide precursors containing different phosphorylation sites could preorganize into alternated nanostructures and undergo dephosphorylation in the presence of alkaline phosphatase(ALP) with variation in kinetic and thermodynamic profiles. Although identical self-assembly compositions were formed after dephosphorylation, precursors with more enhanced preorganized states tended to better promote ALP dephosphorylation, facilitate further self-assembly, and strengthen the catalytic activities of the final assemblies. We envisioned that our strategy would be useful for further construction and manipulation of various artificial enzymes with superior catalytic activities.  相似文献   

2.
以N2与H2的混合气为反应气,和三氧化钼进行多段程序升温反应,制得一种β晶型的氮化钼。以噻吩为模型化合物的常压加氢脱硫反应表明,β-Mo2N0.78具有较强的加氢脱硫活性和强的抗硫化性能。同时考察了预还原、反应温度以及氮化末温、升温速率、反应气中N2-H2比及氮化时间等制备参数对β-Mo2N0.78加氢脱硫活性的影响。研究发现,β-Mo2N0.78的加氢脱硫活性在320 ℃~400 ℃随反应温度的升高增强,而还原预处理会降低催化剂的活性。氮化末温、氮化时间、反应气组成和升温速率等制备参数对催化剂的活性有明显的影响:随着氮化末温的升高,所制备的催化剂催化加氢脱硫活性降低;在氮化末温恒温较长时间,可以引起制备催化剂的加氢脱硫活性下降;存在最佳的反应气组成和各段升温速率。小晶粒的β-Mo2N0.78具有强的加氢脱硫活性。  相似文献   

3.
The analysis of catalytic partial oxidation of light alkanes indicates that processes involving this group proceed via the formation and consecutive transformations of free radicals. Depending on the properties of the catalytic system and reaction conditions the same primary radical can give different final products, olefins, oxygenated organic substances and carbon oxides. An approach to design a complex catalytic system for efficient alkane partial oxidation based on separation of zones where free radicals are formed and where they are transformed into desired products is suggested and examples of its implementation are presented.  相似文献   

4.
The analysis of catalytic partial oxidation of light alkanes indicates that processes involving this group proceed via the formation and consecutive transformations of free radicals. Depending on the properties of the catalytic system and reaction conditions the same primary radical can give different final products, olefins, oxygenated organic substances and carbon oxides. An approach to design a complex catalytic system for efficient alkane partial oxidation based on separation of zones where free radicals are formed and where they are transformed into desired products is suggested and examples of its implementation are presented.  相似文献   

5.
The continuous flow, enantioselective, organophotoredox catalytic asymmetric alkylation of aldehydes was studied, by using a homemade, custom-designed photoreactor for reactions under cryogenic conditions. Going from microfluidic conditions up to a 10 mL mesofluidic reactor, an increase of productivity by almost 18000 % compared to the batch reaction was demonstrated. Finally, for the first time, a stereoselective photoredox organocatalytic continuous flow reaction in a fully telescoped process for an active pharmaceutical ingredient (API)synthesis was successfully achieved. The final process consists of four units of operation: visible light-driven asymmetric catalytic benzylation under continuous flow, inline continuous work-up, neutralisation and a final oxidative amidation step afforded the pharmaceutically active molecule in 95 % e.e.  相似文献   

6.
Electron tunneling pathways in enzymes are critical to their catalytic efficiency. Through electron tunneling, photolyase, a photoenzyme, splits UV-induced cyclobutane pyrimidine dimer into two normal bases. Here, we report our systematic characterization and analyses of photoinitiated three electron transfer processes and cyclobutane ring splitting by following the entire dynamical evolution during enzymatic repair with femtosecond resolution. We observed the complete dynamics of the reactants, all intermediates and final products, and determined their reaction time scales. Using (deoxy)uracil and thymine as dimer substrates, we unambiguously determined the electron tunneling pathways for the forward electron transfer to initiate repair and for the final electron return to restore the active cofactor and complete the catalytic photocycle. Significantly, we found that the adenine moiety of the unusual bent flavin cofactor is essential to mediating all electron-transfer dynamics through a superexchange mechanism, leading to a delicate balance of time scales. The cyclobutane ring splitting takes tens of picoseconds, while electron-transfer dynamics all occur on a longer time scale. The active-site structural integrity, unique electron tunneling pathways, and the critical role of adenine ensure the synergy of these elementary steps in this complex photorepair machinery to achieve maximum repair efficiency which is close to unity. Finally, we used the Marcus electron-transfer theory to evaluate all three electron-transfer processes and thus obtained their reaction driving forces (free energies), reorganization energies, and electronic coupling constants, concluding that the forward and futile back-electron transfer is in the normal region and that the final electron return of the catalytic cycle is in the inverted region.  相似文献   

7.
《先进技术聚合物》2018,29(3):1138-1149
Developing polymer catalytic membrane reactors is an aim due to its outstanding advantages. In this paper, a novel catalytic membrane containing palladium‐supported magnetic nanoparticles is introduced. Silica‐iron oxide core shell nanoparticles were first prepared and functionalized by phosphine ionic liquid functionalized poly(ethylene glycol). The modified magnetic nanoparticles were used as support for immobilization of palladium. The final palladium‐immobilized nanoparticles were used as active filler for the preparation of membrane reactor. The prepared membranes were characterized, and their activities were tested in carbon‐carbon bond formation and catalytic reduction. The catalytic membrane showed good performance in the mentioned reactions.  相似文献   

8.
以MoO_3为前驱物,CH_4/H_2为碳源,采用程序升温直接还原碳化法制备不同碳化终温(640、660、680、700和720℃)的碳化钼催化剂,通过XRD、N_2吸附-脱附、SEM、TEM、XPS和Raman表征研究碳化钼的物理性质和结构性质,并研究不同碳化终温碳化钼对喹啉加氢脱氮的催化性能。结果表明,不同碳化终温的碳化钼催化剂均为β-Mo_2C,碳化终温可显著改变碳化钼表面物种含量、平均孔径和介孔分布。碳化终温为680℃时,催化剂碳化程度较高,表面氧物种含量最低,表面C/Mo物质的量比最高,对应的催化活性也最佳,在340℃、4 MPa条件下,喹啉的转化率和脱氮率均高达99%以上,芳香族类化合物的选择性可达37.8%,显示出较低的芳环破坏性。表面组成尤其是表面氧对于β-Mo_2C上喹啉加氢脱氮反应途径的调控至关重要。  相似文献   

9.
New dinuclear N-heterocyclic gold complexes with bridging thiolate ligands have been designed as catalytic precursors with desired properties such as stability, recyclability and that do not require additives. The dinuclear compound [(AuNHC)2(μ-SC6F5)]OTf could slowly release the active catalytic species [Au(NHC)]+ and the precursor [Au(SC6F5)(NHC)] in solution, which means that both species would remain stable throughout the catalytic cycle and the pre-catalyst could easily be recovered. The properties exhibited by the complexes have been taken advantage of to gain new insights on the gold-catalyzed hydroalkoxylation of alkynes, with the aim of clarifying all the steps of the catalytic cycle, together with the characterization of intermediates and final products. Isolation and characterization of the pure final spiroketals and the thermodynamic intermediate have been achieved for the first time. Moreover, the kinetic intermediate has also been detected for the first time.  相似文献   

10.
Bioelectrochemical conversion of androgens into estrogens was achieved using human aromatase immobilized on glassy carbon electrodes. According to substrate concentration used in the electrochemical cell, it was possible to accumulate the intermediates or to proceed toward the formation of the final estrogen product confirming the distributive nature of catalytic reaction. Furthermore, the catalytic rates showed that the first step of reaction is the limiting one. The results demonstrate that bioelectrochemistry can be employed for understanding complex enzymatic reactions, such as aromatization of steroids.  相似文献   

11.
The adsorption conditions used to immobilize catalase onto thin films of carbon nanotubes were investigated to elucidate the conditions that produced films with maximum amounts of active catalase. The adsorption kinetics were monitored by spectroscopic ellipsometry, and the immobilized catalase films were then assayed for catalytic activity. The development of a volumetric optical model used to interpret the ellipsometric data is discussed. According to the results herein discussed, not only the adsorbed amount but also the initial adsorption rates determine the final catalytic activity of the adsorbed layer. The results described in this paper have direct implications on the rational design and analytical performance of enzymatic biosensors.  相似文献   

12.
A series of precipitants and commercial surfactants (soft templates) were employed to synthesize mesoporous/nano CeO2 by a hydrothermal method. As-prepared CeO2 was impregnated with palladium and employed for low-temperature catalytic oxidation of CO. It was found that both soft templates and precipitants had significant effects on the morphology, particle size, crystallinity, and porous structure of the CeO2, having a significant effect on the surface palladium abundance, molar ratios of surface species, and catalytic activity of the final impregnated Pd/CeO2. Using ammonia as precipitant could facilitate increased surface palladium abundance and surface molar ratios of PdO/Pd SMSI , Ce3+/(Ce3+ + Ce4+), and Osurface/Olattice. The catalytic activity of the final Pd/CeO2 catalysts could be enhanced as well. The optimal P123-assisted ammonia-precipitated Pd/CeO2 catalyst exhibited over 99% catalytic conversion of CO at 50 °C.  相似文献   

13.
Abstract

A simple and very fast process of transfer of a phosphorus atom, performed by a simple molecule acting as catalyst in an almost infinite catalytic cycle is described. The catalyst donates a P atom to a mixture of two different Grignard reagents giving, in a very fast and in a highly selective manner, only one phosphorus-containing compound with an enormous rate enhancement with respect to the corresponding no-catalyzed reaction which gives a final cluttered mixture of many organophosphorus products. The focal factor to explain this highly selective process of P transport lies in the folded structure of the reagent with particular angles around the phosphorus atom which can facilitate the formation of cyclic trigonal bipyramidal pentacoordinated species and then its catalytic activity. In a similar manner, RNA can adopt, in a precise position, a particular three-dimensional structure that might facilitate the formation of pentacoordinated species leading to the catalytic function.  相似文献   

14.
Gabi Baisch 《Tetrahedron》2010,66(21):3742-3748
An efficient three-step synthesis for benzotropolones via three catalytic steps is presented. Pyrogallol phenones are formed in the first step starting from pyrogallol, which is acylated by proton-catalysis. Catalytic hydrogenation of the phenones yields the corresponding alkylated pyrogallyl dervatives. In the final enzyme-catalyzed step the pyrogallol derivatives are annulated to form the benzotropolone cores. An alternative pathway via the Pechmann reaction is also presented. The combination of the three catalytic steps gives access to a wide range of benzotropolone congeners.  相似文献   

15.
The catalytic system Pd/C—HCl is highly active in the reduction of mandelic acid derivatives to phenylacetic acid derivatives with carbon monoxide when the aromatic ring is para-substituted with a hydroxy group. Typical reaction conditions are: 70–110 °C, 20–100 atm of carbon monoxide, benzene—ethanol as reaction medium, substrate/Pd=102–104/1, HCl/substrate=0.3–0.8/1. [Pd] = 10−2 −10−4 M. When the catalytic system is used in combination with PPh3 a slightly higher activity is observed. Comparable results are observed when using a Pd(II) catalyst precursor such as PdX2, in combination with PPh3, or PdX2(PPh3)2 (XCl, AcO). When operating at 110 °C, decomposition to metallic palladium occurs. Pd(II) complexes with diphosphine ligands, such as diphenylphosphinemethane, -ethane, -propane or -butane, do not show any catalytic activity and are recovered unchanged. These observations suggest that Pd(0) complexes play a key role in the catalytic cycle. The proposed catalytic cycle proceeds as follows: the chloride ArCHClCOOR, formed in situ upon reaction of ArCHOHCOOR with hydrochloric acid, oxidatively adds to a Pd(0) species with formation of a catalytic intermediate having a Pd—[CH(Ar)COOR] moiety, which inserts a CO molecule, yielding an acyl intermediate of the type Pd—[COCH(Ar)COOR]. The nucleophilic attack of H2O on the carbon atom of the carbonyl ligand gives back the Pd(0) complex to the catalytic cycle and yields a phenylmalonic acid derivative, which produces the final product, ArCH2COOR, upon CO2 evolution. Alternatively, protonolysis of the intermediate having a Pd—[CH(Ar)COOR] moiety yields directly the final product and a Pd(II) species, which is then reduced by CO to Pd(0). Moreover, no catalytic activity is observed when the Pd/C—HCl system is used in combination with any one of the above diphosphine ligands, probably because these ligands block the sites on the catalyst able to promote the catalytic cycle or because they prevent the reduction of Pd(II) to Pd(0). The influence of the following reaction parameters has been studied: concentration of HCl, PPh3, palladium and substrate, pressure of carbon monoxide, the temperature, reaction time and solvent. The results are compared with those obtained in the carbonylation of aromatic aldehydes to phenylacetic acid derivatives catalyzed by the same system, for which it has been proposed that the catalysis occurs via carbonylation of the aldehyde to a mandelic acid derivative as an intermediate, which is further reduced with CO to yield the final product.  相似文献   

16.
A facile and low‐cost method has been developed to successfully fabricate 3D flower‐like and sphere‐like Ni2GeO4 nanostructures with tunable sizes and shapes. It is found that the hard template, polymethyl methacrylate (PMMA) nanopsheres, is essential to the formation of the final products. The as‐prepared nanostructures can serve as an outstanding support for Pt nanoparticles after surface modification with L ‐lysine. In the catalytic test of CO oxidation, Pt–Ni2GeO4 nanoflowers exhibited much higher catalytic performance compared with Pt–Ni2GeO4 nanospheres, representing a typical size‐dependent catalytic property.  相似文献   

17.
采用溶胶-凝胶法,将苯乙烯-丙烯酸共聚物(PSA)包覆于955 Davison硅胶上得到无机/有机复合微球载体,并在2,6-二[1-(2-异丙基苯基亚胺基)乙基]吡啶/Fe(acac)3均相催化剂中浸渍后得到负载型双亚胺基吡啶铁催化剂.该催化剂在生产高结晶度(72%)聚乙烯的同时,还能生产一定量的α-烯烃.考察了不同膜材料以及聚合条件(不同助催化剂,压力,温度,Al/Fe摩尔比)对聚合活性以及聚合产物性能的影响,发现温度对聚合产物的α-烯烃与聚乙烯的质量比影响最大,助催化剂类型既影响催化剂的活性,也对最终产物的性质有着很大的影响.氯化镁处理的PSA作为膜材料时,负载2,6-二[1-(2-异丙基苯基亚胺基)乙基]吡啶/Fe(acac)3所得到聚乙烯分子量较低(Mw=11.9×104),结晶度较大(72%),熔融指数MI较高(2.35 g/10min),可作为双峰聚乙烯中的低分子量部分加以利用.  相似文献   

18.
Russian Journal of Applied Chemistry - The kinetic heterogeneity of the gadolinium-based catalytic system in 1,4-cis-polyisoprene synthesis was studied. The final form of the active site...  相似文献   

19.
The first total syntheses of multifidosides A–C have been achieved. The synthetic strategy is characterized by catalytic site‐selective acylation of unprotected glycoside precursors in the final stage of the synthesis. High functional‐group tolerance of the site‐selective acylation, promoted by an organocatalyst, enabled the conventionally difficult molecular transformation in a predictable and reliable manner. An advantage of this strategy is to avoid the risks of undesired side reactions during the removal of the protecting groups at the final stage of the total synthesis.  相似文献   

20.
A general and efficient synthesis of 2-benzofuran-2-ylacetamides 5 starting from 1-(2-allyloxyaryl)-2-yn-1-ols 1, amines 4, and CO, in the presence of catalytic amounts of PdI2 in conjunction with PPh3 and KI, has been developed based on the "sequential homobimetallic catalysis" concept, that is, a process in which two different complexes of the same metal, but in two different oxidation states, promote two catalytic cycles in sequence. The first cycle corresponds to a Pd(0)-catalyzed aminodeallylation of 1 with formation of the free phenol 2, which then undergoes Pd(II)-catalyzed aminocarbonylative heterocyclization to give the final product 5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号