首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Electroanalysis》2018,30(1):154-161
Trace amount of arsenate in the presence of arsenite was determined directly on pencil graphite electrode modified by graphene oxide and zirconium (Zr−G−PGE). The layer‐by‐layer modification of PGE was characterized by scanning electron microscopy (SEM), X‐ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). Key point of the developed method was quick adsorption of arsenate than arsenite on the Zr−G−PGE. In optimal conditions, the Zr−G−PGE was applied for determination of arsenate using differential pulse voltammetry in a linear range 0.10–40.0 μg L−1 with a limit of determination of 0.12±0.01 μg L−1. The sensitivity of the electrode was 1.36±0.07 μA/μg L−1. The modified electrode was used to measure the concentration of arsenate in the river water. A recovery test was performed by introducing 10 μg L−1 arsenate into the rivers water in order and acceptable data of average recovery of 101.2 % was obtained. From the experimental results, the as‐prepared electrode can provide a satisfactory method for direct determination of arsenate in real samples.  相似文献   

2.
《Electroanalysis》2017,29(9):2138-2146
Mefloquine (MQ) is a quinoline based antimalarial drug, which is potent against multiple drug‐resistant Plasmodium falciparum . It is widely prescribed for the prophylactic treatment of malaria. Due to extensive usage of MQ, constant monitoring of the drug level in human body is of paramount importancein order to ensure that optimum drug exposure is achieved. The present work describes a gold nanourchins (AuNUs) based electrochemical sensor for the determination of MQ.AuNUs were synthesized via seed‐mediated method and characterized using ultraviolet‐visible spectroscopy, energy‐dispersive X‐ray spectroscopy, field emission scanning electron microscopy, zeta‐sizer and electrochemical techniques (electrochemical impedance spectroscopy and cyclic voltammetry). Fabrication of the sensor was done by drop‐coating the synthesized AuNUs onto a glassy carbon electrode. The fabricated sensor exhibited enhanced voltammetric response, which was attributed to the excellent conductivity and high surface area of AuNUs. Under optimum square wave voltammetric conditions, the sensor displayed two linear response ranges (from 2.0×10−9 to 1.0×10−6 M and from 1.0×10−6 to 1.0×10−3 M) with a detection limit of 1.4 nM. The electrode demonstrated good reproducibility, stability and selectivity over common interferents. The utility of the sensor was successfully assessed for quantification of the drug in pharmaceutical preparation and spiked human urine sample. Thus, the present study demonstrates a promising approach for determination of MQ with practical utility in quality control and clinical analysis.  相似文献   

3.
《Electroanalysis》2018,30(5):943-954
A simple voltammetric nanosensor was described for the highly sensitive determination of antiviral drug Tenofovir. The benzalkonium chloride and silver nanoparticles were associated to build a nanosensor on glassy carbon electrode. Surface characterictics were achieved using scanning electron microscopic technique. The voltammetric measurements were performed in pH range between 1.0 and 10.0 using cyclic, adsorptive stripping differential pulse and adsorptive stripping square wave voltammetry. The linear dependence of the peak current on the square root of scan rates and the slope value (0.770) demonstrated that the oxidation of tenofovir is a mix diffusion‐adsorption controlled process in pH 5.70 acetate buffer. The linearity range was found to be 6.0×10−8–1.0×10−6 M, and nanosensor displayed an excellent detection limit of 2.39×10−9 M by square wave adsorptive stripping voltammetry. The developed nanosensor was successfully applied for the determination of Tenofovir in pharmaceutical dosage form. Moreover, the voltammetric oxidation pathway of tenofovir was also investigated at bare glassy carbon electrode comparing with some possible model compounds (Adenine and Adefovir).  相似文献   

4.
A new linear sweep voltammetric method for quantitative lamotrigine (LMT) determination based on an electrochemically pre-treated pencil graphite electrode (PGE*) is presented. Response characteristics of the PGE* toward the mentioned compound were investigated by cyclic voltammetry and linear sweep voltammetry. The quantitative determination of LMT revealed a wide linear range of 2.5 ⋅ 10−5–1.0 ⋅ 10−3 M with a detection limit of 1.94 ⋅ 10−5 M. The method was used successfully for LMT determination in a pharmaceutical formulation.  相似文献   

5.
In this paper, an electrochemical sensor was prepared based on the modification of pencil graphite electrode (PGE) by hollow platinum nanoparticles/reduced graphene oxide (HPtNPs/rGO/PGE) for determination of ceftazidime (CFZ). Initially, rGO was electrodeposited on the electrode surface, and then, hollow platinum nanoparticles were placed on the electrode surface via galvanic displacement reaction of Pt(IV) ions with cobalt nanoparticles (CoNPs) that had electrodeposited on the electrode surface. Several significant parameters controlling the performance of the HPtNPs/rGO/PGE were examined and optimized using central composite design as one optimization methodology. The surface morphology and elemental characterization of the bare PGE, rGO/PGE, CoNPs/rGO/PGE, and HPtNPs/rGO/PGE-modified electrodes was analyzed by field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and electrochemical impedance spectroscopy. The electrochemical activity of CFZ on resulting modified electrode was investigated by cyclic voltammetry (CV) and adsorptive differential pulse voltammetry (AdDPV). Adsorptive differential pulse voltammetry indicates that peak current increases linearly with respect to increment in CFZ concentration. CFZ was determined in the linear dynamic range of 5.0 × 10?13 to 1.0 × 10?9 M, and the detection limit was determined as 2.2 × 10?13 M using AdDPV under optimized conditions. The results showed that modified electrode has high selectivity and very high sensitivity. The method was used to determine of CFZ in drug injection and plasma samples.  相似文献   

6.
Gold nanoparticles/carbon nanotubes (Au-NPs/CNTs) composites were rapidly synthesized by microwave radiation, and firstly applied for the determination of trace mercury(II) by anodic stripping voltammetry (ASV). The structure and composition of the synthesized Au-NPs/CNTs nanocomposites were characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), UV–vis absorption spectroscopy and cyclic voltammetry. Au-NPs/CNTs nanocomposites modified glassy carbon electrode (Au-NPs/CNTs/GCE) exhibited excellent performance for Hg(II) analysis. A wide linear range (5 × 10−10–1.25 × 10−6 mol/L) and good repeatability (relative standard deviation of 1.84%) were obtained for Hg(II) detection. The limit of detection was found to be 3 × 10−10 mol/L (0.06 μg/L) at 2 min accumulation, while the World Health Organization’s guideline value of mercury for drinking water is 1 μg/L, suggesting the proposed method may have practical utility.  相似文献   

7.
A very effective electrochemical sensor for the analysis of propranolol was constructed using TiO2/MWCNT film deposited on the pencil graphite electrode as modifier. The modified electrode represented excellent electrochemical properties such as fast response, high sensitivity and low detection limit. The proposed sensor showed an excellent selective response to propranolol in the presence of foreign species and other drugs. The electrochemical features of the modified electrode were investigated by cyclic voltammetry and electrochemical impedance spectroscopy (EIS) technique which indicated a decrease in resistance of the modified electrode versus bare PGE and MWCNT/PGE. The surface morphology for the modified electrode was determined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FT-IR). Differential pulse technique (DPV) was used to determine propranolol which showed a good analytical response in the linear range of 8.5×10−8-6.5×10−6 M with a limit of detection 2.1×10−8 M. The TiO2/MWCNT/PGE sensor was conveniently applied for the measurement of propranolol in biological and pharmaceutical media.  相似文献   

8.
《Electroanalysis》2018,30(2):288-295
Methotrexate (MTX) was used as an anti‐cancer drug, but its excessive use can cause serious side effects, it was necessary to monitor MTX in vivo. In this report, DNA was immobilized on a glassy carbon electrode (GCE) modified with graphene oxide (GO) to develop an electrochemical sensor for sensitive determination of MTX for the first time. The adsorptive voltammetric behaviors of MTX on DNA sensor were investigated using differential pulse voltammetry (DPV). The peak current response of guanine in DNA was used as a determination signal of MTX in acetate buffer solution pH 4.6. Voltammetric investigations revealed that the proposed method could determine MTX in the concentration range from 5.5×10−8 to 2.2×10−6 mol L−1 with a lower detection limit of 7.6×109 mol L−1 (S/N=3). The method was applied to detect MTX in human blood serum and diluted urine samples with excellent recoveries of 97.4–102.5 %. Compared with the previous studies, the DNA/GO/GCE electrode constructed by us based on the change rate of guanine current (R%) in DNA, proportionally reflecting the MTX concentration, is simple and sensitive .  相似文献   

9.
Simple, sensitive, accurate and inexpensive differential pulse (DPV) and square wave (SWV) voltammetric methods utilizing zeolite modified carbon paste electrode (ZMCPE) were developed for the determination of Oxymetazoline hydrochloride (OXM) in nasal drops. Various experimental parameters were optimized using cyclic voltammetry (CV). Calibration curves were linear over the concentration ranges 9.8×10−8–3.6×10−6 M and 9.8×10−6–9×10−5 M for DPV and SWV, respectively. The DPV method showed a limit of detection (LOD) of 1.04×10−7 M. The method was applied for the determination of OXM in pharmaceutical formulation with an average recovery of 101.18 % (%RSD=0.41, n=9).  相似文献   

10.
In this paper, for the first time, electroactivated disposable pencil graphite electrode (ePGE) was used for the detection of bioflavonoid hesperidin with cyclic and differential pulse voltammetry. The electroactivation efficiency of the pencil graphite electrode (PGE) was examined employing electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SECM) and the enhancement of electron transfer kinetics of the PGE after the electroactivation was found. Hesperidin is irreversibly oxidized on the ePGE and its oxidation was the most pronounced at pH=5.0. Two electrode processes were detected, on one hand, a mixed diffusion and adsorption control was observed for the first electrode process. On the other hand, only diffusion control was observed in the second electrode process. Linear dependence between the peak current and the hesperidin concentration was obtained in the concentration range from 5×10−7 mol dm−3 to 1×10−5 mol dm−3 and the determined lower limit of detection (LOD) was 2×10−7 mol dm−3. Moreover, hesperidin in pharmaceutical formulation (containing active substance, hesperidin, and excipients) was quantified using ePGE. A good correlation was obtained between experimentally obtained hesperidin concentration by voltammetric analysis and concentration determined by standard HPLC technique (R2=0.9462).  相似文献   

11.
The oxidative behavior of 1-[1-(phenylmethyl)butyl]pyrrolidine, prolintane, was studied at a glassy carbon electrode using linear-sweep and differential-pulse voltammetry. The oxidation process was shown to be irreversible using 0.04 M Britton–Robinson buffer and was diffusion-adsorption controlled. Two voltammetric methods were developed for the determination of prolintane using different techniques: linear-sweep and differential-pulse voltammetry. The peak current varied linearly with prolintane concentrations in the range of 1.0 × 10−5 −2.5 × 10−4 M, with a detection limit of 8.5 × 10−6 and 4.0 × 10−6 M, and with relative standard deviations of 2.1 % and 3.1 %, respectively. The methods were applied to commercial preparations, giving relative errors less than 3.1 % and relative standard deviations lower than 4.8 % (n = 10). Determination of prolintane (down to the 8.5 × 10−8 M level) can be performed by using a preconcentration step prior to the determination by differential-pulse voltammetry in 0.04 M Britton–Robinson buffer (pH 8.0) with preconcentration potential of 0.0 V. The detection limit was found to be 6.2 × 10−8 M (4 min preconcentration) and the relative standard deviation for 2.5 × 10−7 M prolintane (n = 5) was 4.6 %. Applicability to human urine analysis is illustrated (recovery 98 ± 2 %). Standard additions method can be used to determine prolintane in real samples of urine.  相似文献   

12.
《Electroanalysis》2017,29(7):1691-1699
The simultaneous voltammetric determination of melatonin (MT) and pyridoxine (PY) has been carried out at a cathodically pretreated boron‐doped diamond electrode. By using cyclic voltammetry, a separation of the oxidation peak potentials of both compounds present in mixture was about 0.47 V in Britton‐Robinson buffer, pH 2. The results obtained by square‐wave voltammetry allowed a method to be developed for determination of MT and PY simultaneously in the ranges 1–100 μg mL−1 (4.3×10−6–4.3×10−4 mol L−1) and 10–175 μg mL−1 (4.9×10−5–8.5×10−4 mol L−1), with detection limits of 0.14 μg mL−1 (6.0×10−7 mol L−1) and 1.35 μg mL−1 (6.6×10−6 mol L−1), respectively. The proposed method was successfully to the dietary supplements samples containing these compounds for health‐caring purposes.  相似文献   

13.
The voltammetric oxidation and determination of chlorpheniramine maleate (CPM) was studied at a carbon paste electrode (CPE) in the presence of sodium‐dodecyl sulfate (SDS) by cyclic and differential pulse voltammetry. The results indicated that the voltammetric response of chlorpheniramine maleate was markedly increased in the low concentration of SDS, suggesting that SDS exhibits observable enhancement effect to the determination of chlorpheniramine maleate. Under the optimal conditions the peak current was proportional to chlorpheniramine maleate concentration in the range of 8.0×10−6 to 1.0×10−4 M with detection limit of 1.7×10−6 M by differential pulse voltammetry. The proposed method was successfully applied to the determination of chlorpheniramine in pharmaceutical and urine samples.  相似文献   

14.
In this study; a sensitive, selective, and simple electrochemical sensor was developed to determine low concentration pyridoxine (Py) using a phosphorus-doped pencil graphite electrode (P-doped/PGE). Electrode modification was implemented using the chronoamperometry method at +2.0 V constant potential and 100 seconds in 0.1 mol L−1 H3PO4 supporting electrolyte solution. The characterization processes of the P-doped/PGE were carried out using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), and atomic force microscope (AFM) methods. In the concentration study, using the differential pulse voltammetry (DPV) method, a linear calibration plot was acquired in the concentration range of 0.5 to 300 μmol L−1 Py. The limit of quantification (LOQ) and limit of detection (LOD) of the developed method were calculated as 0.219 μmol L−1 and 0.0656 μmol L−1, respectively. Detection of Py has been successfully performed on the P-doped/PGE in the beverage samples. As a result, the method developed has been shown to have fast, low cost, and simple for the sensitive and selective detection of Py as an effective electrode.  相似文献   

15.
《Electroanalysis》2017,29(4):1141-1146
A novel and sensitive voltammetric method was proposed for separation and determination of glutathione (GSH) and L‐tyrosine (Tyr) at acetylene black and chitosan modified glassy carbon electrode (AB‐CS/GCE). By introducing chlorogenic acid (CGA) as a new electrocatalytic mediator, GSH could be detected at much lower potential with symmetric peak shape. Acetylene black and chitosan composite served as current signal amplifier for sensitive detection. The electrochemical behavior of GSH and Tyr in the presence of CGA was studied at AB‐CS/GCE and complete separation of anodic peaks was achieved. Under the optimum conditions, the electrocatalytic oxidation peak current of GSH showed a linear dependence on its concentration in the ranges of 2.0×10−7‐4.0×10−5 M with the detection limit of 5.8×10−8 M (S/N=3), while the oxidation peak current of Tyr was linear to its concentration from 2.5×10−6 to 4.3×10−4 M with the detection limit of 9.2×10−7 M (S/N=3) by differential pulse voltammetry (DPV). The established method has been applied to the simultaneous determination of GSH and Tyr in human urine with satisfactory results.  相似文献   

16.
The electrochemical behavior of nandrolone phenylpropionate (NP) at a hanging mercury drop electrode (HMDE) was investigated. The adsorption phenomena were observed by linear sweep voltammetry in NaOH. The electrode reaction was found to be a totally irreversible reduction of the adsorbed NP. In 1 × 10−7 mol/L NaOH, the detection limit and the linear range are 5 × 10−10 and 8 × 10−10–5 × 10−7 mol/L, respectively. The relative standard deviation of the method is 1.6 % for 1.7 × 10−7 mol/L NP. The method was applied to the determination of NP in clinical ampuls.  相似文献   

17.
《Electroanalysis》2017,29(2):506-513
A simple and highly sensitive sensor has been used for the determination of oxomemazine hydrochloride (OXO) in presence of paracetamol (PAR) and guaifenesin (GU). Carbon paste electrode was modified with multiwalled carbon nanotube (MWCNT), alizarine red S (AZ) and chitosan (CH). Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to characterize the nanostructure and performance of the sensor. Under the optimized experimental conditions OXO gave linear response over the range of 2.00×10−6–1.00×10−4 mol L−1. The detection limit was found to be 4.35×10−7 mol L−1. The practical application of the modified electrode was demonstrated by measuring the concentration of OXO in pharmaceutical samples and urine. This revealed that suggested sensor shows excellent analytical performance for the determination of OXO in terms of a very low detection limit, high sensitivity and selectivity.  相似文献   

18.
In this study, a molecularly imprinted electrochemical sensor (MIP/DA) was investigated for selective and sensitive determination of dopamine (DA) by electrochemical polymerization of p-aminothiophenol in the presence of DA on gold electrode. According to electrochemical behaviour of the sensor, gained through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), MIP/DA sensor showed distinctive electron transfer characteristics in comparison to the non-imprinted (NIP/DA) sensor. Besides the MIP/DA sensor showed high selectivity for dopamine through its analyte specific cavities. The sensor had a broad working range of 5.0×10−8–2.0×10−7 M with a limit of detection (LOD) of 1.8×10−8 M and the developed sensor was successfully applied for determination of dopamine in pharmaceutical samples.  相似文献   

19.
《Electroanalysis》2017,29(5):1258-1266
The nanoporous graphene papers (NGPs) was prepared by the hard‐template method. The Pt−Pd modified NGPs hybrid was prepared by the self‐assembly method. Then a glassy carbon electrode (GCE) modified with Pt−Pd bimetallic nanoparticles‐functionalized nanoporous graphene composite has been prepared for the electrochemical determination of Xanthine (XA). The Pt−Pd/NGPs hybrid was characterized by transmission electron microscopy, scanning electron microscope and X‐ray diffraction. The electrochemical behavior of XA on Pt−Pd/NGPs/GCE was investigated by cyclic voltammetry and amperometric i‐t. The Pt−Pd/NGPs modified electrode exhibited remarkably electrocatalytic activity towards the oxidation reaction of XA in phosphate buffer solution (pH=5.5). Under the optimal conditions, the determination of XA was accomplished by using amperometric i‐t, the linear response range from 1.0×10−5∼1.2×10−4 M. The detection limit was 3.0×10−6 M (S/N=3). The proposed modified electrode showed good sensitivity, selectivity, and stability with applied to determine XA in human urine.  相似文献   

20.
We present a novel electrochemical sensor based on an electrode modified with molecularly imprinted polymers for the detection of chlorpyrifos. The modified electrode was constructed by the synthesis of molecularly imprinted polymers by a precipitation method then coated on a glassy carbon electrode. The surface morphology of the modified electrode was characterized by using field‐emission scanning electron microscopy and transmission electron microscopy. The performance of the imprinted sensor was thoroughly investigated by using cyclic voltammetry and differential pulse voltammetry. The imprinted electrochemical sensor displayed high repeatability, stability, and selectivity towards the template molecules. Under the optimal experimental conditions, the peak current response of the imprinted electrochemical sensor was linearly related to the concentration of chlorpyrifos over the range 1 × 10−10–1 × 10−5 mol/L with a limit of detection of 4.08 × 10−9 mol/L (signal‐to‐noise ratio = 3). Furthermore, the proposed molecularly imprinted electrochemical sensor was applied to the determination of chlorpyrifos in the complicated matrixes of real samples with satisfactory results. Therefore, the molecularly imprinted polymers based electrochemical sensor might provide a highly selective, rapid, and cost‐effective method for chlorpyrifos determination and related analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号