首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Combining deflective dielectrophoretic barriers with controlled pressure driven liquid flows in microfluidic devices allows accurate handling of particles such as biological cells in suspensions. Working towards cell-based lab-on-a-chip applications, a platform permitting rapid testing of devices having different dielectrophoretic and fluidic subunits was developed. The performance of such a system is shown in the cases of (A) flooding a small number of immobilised cells with a dye and (B) transient buffer swapping of a large number of cells in flow. The transition times for moving cells from one reagent to the other are below 0.5 s in the case of flow-through cell dipping.  相似文献   

2.
A rapid and user‐friendly approach is here presented for assembling smart and versatile platforms for simultaneous electrochemical and spectrophotometric measurements. They consist of an optically transparent pencil‐drawn electrochemical cell, including reference, counter and working carbon electrodes, assembled on flexible PVC supports, exploiting a commercial desktop digitally controlled plotter/cutter. This cell is installed on a U shaped 3D printed polylactic frame where a second transparent window consisting of an unmodified PVC layer was also applied. After optimization of the fabrication procedure, the electrochemical and optical characterization of the assembled miniaturized platforms was performed by using aqueous electrolytes and potassium hexacyanoferrate(II) as redox probe. These devices were then tested by a proof‐of‐concept direct and simultaneous electrochemical and spectrophotometric quantification of a commonly used food dye (Brilliant Blue, E‐133) in soft‐drinks and candies. Spectrophotometric and electrochemical determinations can be performed at the same time, providing simultaneous information and enabling a concomitant comparison and validation of the results obtained.  相似文献   

3.
This paper presents the application of the discrete dielectrophoretic force to separate polystyrene particles from red blood cells. The separation process employs a simple microfluidic device that is composed of interdigitated electrodes and a microchannel. The discrete dielectrophoretic force is generated by adjusting the duty cycle of the applied voltage. The electrodes make a tilt angle with the microchannel to change the moving direction of the red blood cells. By adjusting the voltage magnitude and duty cycle, we investigate the deflection of red blood cells and the variation of cell velocity along electrode edge under positive dielectrophoresis. The experiments with polystyrene particles show that the enrichment of the particles is greater than 150 times. The maximum separation efficiency is 97% for particle-to-cell number ratio equal to 1:2000 in the sample having high cell concentration. Using the appropriate applied voltage magnitude and duty cycle, the discrete dielectrophoretic force can prevent the clogging of microchannel while successfully separating the particles from the cells with high enrichment and efficiency. The proposed principle can be readily applied to dielectrophoresis-based devices for biomedical sample preparation or diagnosis such as the separation of rare or infected cells from a blood sample.  相似文献   

4.
Urdaneta M  Smela E 《Electrophoresis》2007,28(18):3145-3155
A novel method of modeling multiple frequency dielectrophoresis (MFDEP) is introduced based on the concept of an effective Clausius-Mossotti factor, CM(eff), for a particle that is exposed to electrical fields of different frequencies, coming either from one or multiple pairs of electrodes. This analysis clearly illustrates how adding frequencies adds control parameters, up to two additional parameters per frequency. As a result, MFDEP can be used for a wide variety of applications, including separating particles with very similar Clausius-Mossotti spectra, trapping multiple groups of cells simultaneously, and cancelling unwanted dielectrophoretic traps. Illustrating the modeling approach, we determine the CM(eff)s for live and dead yeast cells, and then predict their equilibrium distribution on a three-electrode configuration, with two electrodes at different frequencies and the third electrode at ground. This prediction is validated experimentally, using MFDEP to selectively attract live cells to one location and dead cells to another, trapping both. These results demonstrate that the use of multiple frequencies for the manipulation of particles can enhance the performance of dielectrophoretic devices, not only for sorting, but also for such applications as patterning cells in close proximity for the formation of cell consortia.  相似文献   

5.
Xu Y  Yao H  Wang L  Xing W  Cheng J 《Lab on a chip》2011,11(14):2417-2423
In basic cell biology research and drug discovery, it is important to rapidly introduce genes, proteins or drug compounds into cells without permanent damage. Here, we report a three dimensional SU-8 micro-well structure sandwiched with an indium tin oxide (ITO) electrode-covered slide from the top and an individually addressable array of microelectrodes on the bottom to allow parallel delivery of exogenous molecules into various cells in a spatially specific manner. A positive dielectrophoretic force was selectively applied by energizing appropriate electrodes to capture the dispersed cells at the bottom electrode, while the micro-wells were designed to confine cells in situ when the positive dielectrophoretic force is removed. The combination of spatial positive dielectrophoresis (pDEP) and micro-wells made it possible to construct cell microarrays with specific patterns. Once the cells become attached to the electrodes, different plasmids can be introduced sequentially for selective electroporation. The present cell arraying-assisted electroporation chip integrates a pDEP-assisted cell positioning function with selective electroporation to provide a simple and efficient method for gene transfer. This platform is ideal for high throughput screening of compounds in parallel and thus holds promise for applications in cellular and molecular research.  相似文献   

6.
In a microbiological device, cell or particle manipulation and characterization require the use of electric field on different electrodes in several configurations and shapes. To efficiently design microelectrodes within a microfluidic channel for dielectrophoresis focusing, manipulation and characterization of cells, the designer will seek the exact distribution of the electric potential, electric field and hence dielectrophoresis force exerted on the cell within the microdevice. In this paper we describe the approach attaining the analytical solution of the dielectrophoretic force expression within a microchannel with parallel facing same size electrodes present on the two faces of channel substrates, with opposite voltages on the pair electrodes. Simple Fourier series mathematical expressions are derived for electric potential, electric field and dielectric force between two distant finite‐size electrodes. Excellent agreement is found by comparing the analytical results calculated using MATLAB? with numerical ones obtained by Comsol. This analytical result can help the designer to perform simple design parametric analysis. Bio‐microdevices are also designed and fabricated to illustrate the theoretical solution results with the experimental data. Experiments with red blood cells show the dielectrophoretic force contour plots of the analytical data matched to the experimental results.  相似文献   

7.
Dielectrophoresis (DEP) is the motion of particles due to polarization effects in nonuniform electric fields. DEP has great potential for handling cells and is a non-destructive phenomenon. It has been utilized for different cell analysis, from viability assessments to concentration enrichment and separation. Insulator-based DEP (iDEP) provides an attractive alternative to conventional electrode-based systems; in iDEP, insulating structures are used to generate nonuniform electric fields, resulting in simpler and more robust devices. Despite the rapid development of iDEP microdevices for applications with cells, the fundamentals behind the dielectrophoretic behavior of cells has not been fully elucidated. Understanding the theory behind iDEP is necessary to continue the progress in this field. This work presents the manipulation and separation of bacterial and yeast cells with iDEP. A computational model in COMSOL Multiphysics was employed to predict the effect of direct current-iDEP on cells suspended in a microchannel containing an array of insulating structures. The model allowed predicting particle behavior, pathlines and the regions where dielectrophoretic immobilization should occur. Experimental work was performed at the same operating conditions employed with the model and results were compared, obtaining good agreement. This is the first report on the mathematical modeling of the dielectrophoretic response of yeast and bacterial cells in a DC-iDEP microdevice.  相似文献   

8.
Here, we report a microfluidic same‐single‐cell analysis to study the inhibition of multidrug resistance due to drug efflux on single leukemic cells. Drug efflux inhibition was investigated in the microfluidic chip using two different fluorescence detection systems, namely, a compact single‐cell bioanalyzer and the conventional optical detection system constructed from an inverted microscope and a microphotometer. More importantly, a compact signal generator was used to conduct dielectrophoretic cell trapping together with the compact SCB. By using the DEP force, a single acute myeloid leukemia cell was trapped in the cell retention structure of the chip. This allowed us to detect dye accumulation in the MDR leukemic cells in the presence of cyclosporine A (CsA). CsA and rhodamine 123 were used as the P‐glycoprotein inhibitor and fluorescent dye, respectively. The result showed that the Rh123 fluorescence signal in a single‐cell increased dramatically over its same‐cell control on both fluorescence detection systems due to the inhibition by CsA.  相似文献   

9.
Microsample preparation by dielectrophoresis: isolation of malaria   总被引:1,自引:0,他引:1  
An important enabling factor for realising integrated micro fluidic analysis instruments for medical diagnostics purposes is front-end sample preparation. Dielectrophoresis is a method that offers great potential for cell discrimination and isolation for sample processing, and here we have applied it to the problem of isolating malaria-infected cells from blood. During development of the malarial pathogen, Plasmodium falciparum, increases occur in the ionic permeability of the plasma membrane of infected erythrocytes. When challenged by suspension in a low conductivity medium, infected cells lose internal ions while uninfected cells retain them. The resultant dielectric differences between infected and uninfected cells were exploited by dielectrophoretic manipulation in spatially inhomogeneous, travelling electrical fields produced by two types of microelectrode arrays. Parasitised cells of ring form or later stage from cultures and clinical specimens were isolated by steric dielectric field-flow-fractionation, focused at the centre of a spiral electrode array, and identified and counted. The dielectrophoretic methods require only a few micro litres of blood, and should be applicable to the production of small, low-cost automated devices for assessing parasite concentrations with potential applicability to drug sensitivity studies and the diagnosis of malaria. By simple adjustment of the electrical field parameters, other cell subpopulations that characterise disease, such as residual cancer cells in blood, can be similarly isolated and analysed.  相似文献   

10.
Shen Y  Elele E  Khusid B 《Electrophoresis》2011,32(18):2559-2568
A novel concept of an alternating current (AC) dielectrophoretic filter with a three-dimensional electrode array is presented. A filter is constructed by winding into layers around the core tube two sheets of woven metal wire-mesh with several sheets of woven insulating wire-mesh sandwiched in between. Contrary to conventional dielectrophoretic devices, the proposed design of electrodes generates a high-gradient field over a large working volume by applying several hundred volts at a standard frequency of 60?Hz. The operating principle of filtration is based on our recently developed method of AC dielectrophoretic gating for microfluidics. The filtration efficiency is expressed in terms of two non-dimensional parameters, which describe the combined influence of the particle polarizability and size, the oil viscosity and flow rate, and the field gradient on the particle captivity. The proof-of-concept is tested by measuring the single-pass performance of two filters on positively polarized particles dispersed in engine oil: spherical glass beads, fused aluminum oxide powder, and silicon metal powder, all smaller than the mesh opening. The results obtained are used to consider the potential of using AC dielectrophoretic filtration and provide critical design guidelines for the development of a filter based on the retention capability of challenge particles.  相似文献   

11.
The dielectrophoresis (DEP) phenomenon is used to separate platelets directly from diluted whole blood in microfluidic channels. By exploiting the fact that platelets are the smallest cell type in blood, we utilize the DEP-activated cell sorter (DACS) device to perform size-based fractionation of blood samples and continuously enrich the platelets in a label-free manner. Cytometry analysis revealed that a single pass through the two-stage DACS device yields a high purity of platelets (approximately 95%) at a throughput of approximately 2.2 x 10(4) cells/second/microchannel with minimal platelet activation. This work demonstrates gentle and label-free dielectrophoretic separation of delicate cells from complex samples and such a separation approach may open a path toward continuous screening of blood products by integrated microfluidic devices.  相似文献   

12.
This paper reports the new combination of cell sorting and counting capabilities on a single device. Most state-of-the-art devices combining these technologies use optical techniques requiring complicate experimental setups and labeled samples. The use of a label-free, electrical device significantly decreases the system complexity and makes it more appropriate for use in point-of-care diagnostics.Living and dead yeast cells are separated by dielectrophoretic forces and counted using coulter counters. The combination of these two methods allows the determination of the percentage of living and dead cells for viability studies of cell samples. It could further be used for sorting and counting of blood cells in applications such as diagnosis of insufficient cell concentrations, identification of cell deficiencies or bacterial contamination. The use of dielectrophoresis (DEP) as sorting principle allows to separate cells based on their dielectric properties in place of size-based separation, enabling sorting of large panels of cells and separation of infected and non-infected cells of the same type.  相似文献   

13.
We present a microfluidic cell-culture chip that enables trapping, cultivation and release of selected individual cells. The chip is fabricated by a simple hybrid glass-SU-8-PDMS approach, which produces a completely transparent microfluidic system amenable to optical inspection. Single cells are trapped in a microfluidic channel using mild suction at defined cell immobilization orifices, where they are cultivated under controlled environmental conditions. Cells of interest can be individually and independently released for further downstream analysis by applying a negative dielectrophoretic force via the respective electrodes located at each immobilization site. The combination of hydrodynamic cell-trapping and dielectrophoretic methods for cell releasing enables highly versatile single-cell manipulation in an array-based format. Computational fluid dynamics simulations were performed to estimate the properties of the system during cell trapping and releasing. Polystyrene beads and yeast cells have been used to investigate and characterize the different functions and to demonstrate biological compatibility and viability of the platform for single-cell applications in research areas such as systems biology.  相似文献   

14.
Xuan X  Li D 《Electrophoresis》2005,26(18):3552-3560
The electrokinetic focusing and the resultant accelerated electrophoretic motion of polystyrene particles and red blood cells were visualized in microfluidic cross-channels. The experimentally measured width of the focused stream and the measured velocity increase of particles and cells at different voltage ratios follow the proposed analytical formula within the experimental error. The attained velocity increase is insensitive to the particle size, particle property (i.e., particle or cell), and particle trajectory. By solving the electrical potential field in the cross-channel at the experimental conditions, we demonstrate that the squeezed electrical field lines in the channel intersection determine the shape of the focused stream, and the nonuniform distribution of axial electrical field strength underlies the variation of particle/cell electrophoretic velocity through the focusing region. However, the dielectrophoretic force resulting from the nonuniform electrical field in the intersection seems to push the acceleration region of particles and cells slightly in the downstream direction. We have also achieved the single particle/cell dispensing by instantly triggering an electrical pulse perpendicular to the focused particulate flow in a double-cross microchannel. The electrokinetic manipulation of particle/cell in microchannels demonstrated in this work can be used for developing integrated lab-on-a-chip devices for studies of cells.  相似文献   

15.
Tissues formed by cells encapsulated in hydrogels have uses in biotechnology, cell-based assays, and tissue engineering. We have previously presented a 3D micropatterning technique that rapidly localizes live cells within hydrogels using dielectrophoretic (DEP) forces, and have demonstrated the ability to modulate tissue function through the control of microscale cell architecture. A limitation of this method is the requirement that a single biomaterial must simultaneously harbor biological properties that support cell survival and function and material properties that permit efficient dielectrophoretic patterning. Here, we resolve this issue by forming multiphase tissues consisting of microscale tissue sub-units in a 'local phase' biomaterial, which, in turn, are organized by DEP forces in a separate, mechanically supportive 'bulk phase' material. We first define the effects of medium conductivity on the speed and quality of DEP cell patterning. As a case study, we then produce multiphase tissues with microscale architecture that combine high local hydrogel conductivity for enhanced survival of sensitive liver progenitor cells with low bulk conductivity required for efficient DEP micropatterning. This approach enables an expanded range of studies examining the influence of 3D cellular architecture on diverse cell types, and in the future may improve the biological function of inhomogeneous tissues assembled from a variety of modular tissue sub-units.  相似文献   

16.
Circulating tumor cells (CTCs) play an essential role in the metastasis of tumors, and thus can serve as a valuable prognostic factor for malignant diseases. As a result, the ability to isolate and characterize CTCs is essential. This review underlines the potential of dielectrophoresis for CTCs enrichment. It begins by summarizing the key performance parameters and challenges of CTCs isolation using microfluidics. The two main categories of CTCs enrichment—affinity‐based and label‐free methods—are analysed, emphasising the advantages and disadvantages of each as well as their clinical potential. While the main argument in favour of affinity‐based methods is the strong specificity of CTCs isolation, the major advantage of the label‐free technologies is in preserving the integrity of the cellular membrane, an essential requirement for downstream characterization. Moving forward, we try to answer the main question: “What makes dielectrophoresis a method of choice in CTCs isolation?” The uniqueness of dielectrophoretic CTCs enrichment resides in coupling the specificity of the isolation process with the conservation of the membrane surface. The specificity of the dielectrophoretic method stems from the differences in the dielectric properties between CTCs and other cells in the blood: the capacitances of the malignantly transformed cellular membranes of CTCs differ from those of other cells. Examples of dielectrophoretic devices are described and their performance evaluated. Critical requirements for using dielectrophoresis to isolate CTCs are highlighted. Finally, we consider that DEP has the potential of becoming a cytometric method for large‐scale sorting and characterization of cells.  相似文献   

17.
Microfluidic devices with three-dimensional (3-D) arrays of microelectrodes embedded in microchannels have been developed to study dielectrophoretic forces acting on synthetic micro- and nanoparticles. In particular, so-called deflector structures were used to separate particles according to their size and to enable accumulation of a fraction of interest into a small sample volume for further analysis. Particle velocity within the microchannels was measured by video microscopy and the hydrodynamic friction forces exerted on deflected particles were determined according to Stokes law. These results lead to an absolute measure of the dielectrophoretic forces and allowed for a quantitative test of the underlying theory. In summary, the influence of channel height, particle size, buffer composition, electric field, strength and frequency on the dielectrophoretic force and the effectiveness of dielectrophoretic deflection structures were determined. For this purpose, microfluidic devices have been developed comprising pairs of electrodes extending into fluid channels on both top and bottom side of the microfluidic channels. Electrodes were aligned under angles varying from 0 to 75 degrees with respect to the direction of flow. Devices with channel height varying between 5 and 50 microm were manufactured. Fabrication involved a dedicated bonding technology using a mask aligner and UV-curing adhesive. Particles with radius ranging from 250 nm to 12 microm were injected into the channels using aqueous buffer solutions.  相似文献   

18.
We have applied the microfluidic cell separation method of dielectrophoretic field-flow fractionation (DEP-FFF) to the enrichment of a putative stem cell population from an enzyme-digested adipose tissue derived cell suspension. A DEP-FFF separator device was constructed using a novel microfluidic-microelectronic hybrid flex-circuit fabrication approach that is scaleable and anticipates future low-cost volume manufacturing. We report the separation of a nucleated cell fraction from cell debris and the bulk of the erythrocyte population, with the relatively rare (<2% starting concentration) NG2-positive cell population (pericytes and/or putative progenitor cells) being enriched up to 14-fold. This work demonstrates a potential clinical application for DEP-FFF and further establishes the utility of the method for achieving label-free fractionation of cell subpopulations.  相似文献   

19.
Glioblastoma multiforme is the most aggressive and invasive brain cancer consisting of genetically and phenotypically altering glial cells. It has massive heterogeneity due to its highly complex and dynamic microenvironment. Here, electrophysiological properties of U87 human glioma cell line were measured based on a dielectrophoresis phenomenon to quantify the population heterogeneity of glioma cells. Dielectrophoretic forces were generated using a gold-microelectrode array within a microfluidic channel when 3 Vpp and 100, 200, 300, 400, 500 kHz, 1, 2, 5, and 10 MHz frequencies were applied. We analyzed the dielectrophoretic behavior of 500 glioma cells, and revealed that the crossover frequency of glioma cells was around 140 kHz. A quantifying dielectrophoretic movement of the glioma cells exhibited three distinct glioma subpopulations: 50% of the glioma cells experienced strong, 30% of the cells were spread in the microchannel by moderate, and the rest of the cells experienced very weak positive dielectrophoretic forces. Our results demonstrated the dielectrophoretic spectra of U87 glioma cell line. Dielectrophoretic responses of glioma cells linked population heterogeneity to membrane properties of glioma cells rather than their size distribution in the population.  相似文献   

20.
The dielectrophoretic (DEP) behavior of individual yeast cells (5-7 microm in diameter) in aqueous media was observed in a fabricated planar quadrupole microelectrode with a working area of 100 microm in diameter by an optical microscope. The yeast cells migrated in the radial direction in the working area. The DEP velocity of the cells increased as they approached the electrode. The DEP trajectory of the cells was analyzed with a theoretical equation derived previously, and the dielectrophoretic mobility was determined. The dielectrophoretic mobility was found to be affected by the viability of cells, the conductivity of the medium, and the binding of lectin protein (concanavalin A) to the cell surface. These DEP behaviors were analyzed based on the permittivities and conductivities of the cell interior and wall, and those of the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号