首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polarized Raman and density functional theory (DFT) approach have been applied to study the static and dynamic properties of pyridazine (PRD) in H2O(W) and D2O(D) environment. The possible hydrogen bonded (HB) complexes of PRD with H2O in gas phase and in the water solvation (using IEF-PCM and Onsager models) have been calculated using a B3LYP functional and 6-31+G(d,p)/6-311++G(d,p) basis sets. The static interaction in the PRD + H2O complex leads to a blue shift in all the Raman modes of PRD and red shift in the O–H modes of water. The IEF-PCM solvation model gives the Raman wavenumbers closest to the experimental values. Raman spectra of ~962 and 1061 cm?1 mode of PRD in the mixture of PRD + H2O and PRD + D2O at different mole fractions of PRD (x) have been measured. A difference in the wavenumber shift of the two modes of PRD is observed experimentally when PRD is diluted with H2O and D2O. The wavenumber shift at maximum dilution (x = 0.1), however, takes the same value in both H2O and D2O. In view of the similar chemical properties of H2O and D2O, the difference in the trend of the wavenumber shift is not trivial. It has been explained on the basis of relative values of dipole moments of H2O, D2O, and conjugated molecules of PRD with H2O/D2O calculated theoretically and the role of larger diffusive property of H2O compared to D2O. The dynamical process in the mixture of PRD+ H2O/D2O is discussed by studying the variation of the linewidth with concentration. A theoretical model, which is based on the fact that the concentration in microscopic volume fluctuates, fits the experimental results nicely.  相似文献   

2.
Owing to the quite similar chemical properties of H2O and D2O, rational molecular design of D2O optical sensors has not been realized so far. Now purely organic chromophores bearing OH groups with appropriate pKa values are shown to display distinctly different optical responding properties toward D2O and H2O owing to the slight difference in acidity between D2O and H2O. This discovery is a new and facile strategy for the construction of D2O optical sensors. Through this strategy, ratiometric colorimetric D2O sensor of NIM‐2F and colorimetric/fluorescent dual‐channel D2O sensor of AF were acquired successfully. Both NIM‐2F and AF can not only qualitatively distinguish D2O from H2O by the naked eye, but also quantitatively detect the H2O content in D2O.  相似文献   

3.
An analysis of the band shapes for liquid water in the framework of the H-bond fluctuation concept has revealed two temperature-independent functions able of describing IR- and Raman spectra for HOD from −200 to +300°C and also some water thermodynamic characteristics. Account taken of vibrational coupling explains the H2O and D2O spectra including the temperature dependence of their profiles.  相似文献   

4.
采用密度泛函B3P86方法和6-311++G(3df,3pf)基组,计算了在-0.05~0.05a.u.外偶极电场作用下,H2O,D2O,T2O,H2,D2,T2,O2的电子能量、核运动能量和熵值,在此基础上通过计算H2O(g)→H2(g)+O2(g)、D2O(g)→D2(g)+O2(g)、T2O(g)→T2(g)+O2(g)的焓变ΔH、熵变ΔS、Gibbs函数变化ΔG,最后得到了H2O,D2O,T2O的可逆分解电压Er.计算结果表明,外偶极电场存在时,H2O,D2O,T2O的Gibbs自由能变ΔG和可逆分解电压Er都有明显的变化,当外偶极电场正方向增加时,其Gibbs自由能变ΔG和可逆分解电压Er均趋于线性增加;当外偶极电场负方向增加时,其Gibbs自由能变ΔG和可逆分解电压Er均趋于线性减小;在相同外偶极电场作用下,Gibbs自由能变ΔG和可逆分解电压Er随H2O,D2O,T2O依次增加.  相似文献   

5.
Single crystals of Rb2H2P2O6 · 2H2O could be obtained from aqueous solutions of hypodiphosphoric acid and rubidium carbonate. Its crystal structure was determined by X‐ray diffraction and it crystallizes in the monoclinic space group P21/c with Z = 4. The salt‐like title compound consists of [H2P2O6]2– units in staggered P2O6‐skeleton conformation, Rb+ cations, and H2O molecules, held together by intermolecular hydrogen bonds of the type O ··· O. The vibrational spectra (IR/FIR and Raman) of the rubidium salt were recorded and an assignment of the vibrational modes is proposed based on the point group C2h for the P2O6‐skeleton of the anion. The thermal behavior of Rb2H2P2O6 · 2H2O is dominated by a complex TG decay indicating a simultaneous H2O delivery coupled with a disproportionation of [H2P2O6]2–, what is also supported by Raman spectra of heated samples.  相似文献   

6.
Raman and infrared spectra of gaseous SO2 and SO2 dissolved in H2O and D2O have been recorded. Although the results are in general agreement with previous work, some new infrared data is presented, as well as results on the effect of phase and solvent change on the infrared and Raman spectra. Previous workers have used the technique of vibrational spectroscopy to investigate the structure of the pyrosulfite ion in solution. The present study indicates that it is difficult to make conclusive statements concerning the structure of this ion on the basis of present and previous work. Solutions containing the sulfite ion have also been studied. Spectral differences between previous studies have been investigated, and an earlier study by Bernstein is essentially substantiated, although the present work does indicate, some discrepancy in the 900–1100-cm? region for this ion.  相似文献   

7.
Freezing-point depression of mixtures of H 2 16 O and H 2 18 O were measured. The results showed that the freezing point of the mixture rose linearly with an increase in the molal concentration of H 2 18 O. The results suggested the formation of a solid solution of H 2 16 O and H 2 18 O by freezing, similar to that formed by H 2 O–D 2 O, and that H 2 18 O behaves as a different molecule than H 2 16 O.  相似文献   

8.
The correlations between the geometrical parameters of the O–H...O hydrogen bridge and the stretching frequency OH are refined by using neutron diffraction and vibrational spectroscopy data. The distribution functions of the interatomic distances r OH and intermolecular distances R O...O in water in the range from –40 to 100°C were calculated from the Raman spectra of HOD. The extent of asymmetry of H2O molecules in the liquid state, caused by fluctuations of the local environment of two OH groups, and its manifestations in the structure and vibrational spectra of water are analyzed.  相似文献   

9.
The compounds NiNi(CN)4·3,5H2O and Ni(NH3)2Ni(CN)4·H2O have been studied to examine the possibility of substituting their H2O or NH3 content by D2O. Contact with D2O was performed after heating the compounds to several temperatures. Depending on the degree of decomposition of the original compounds different ranges of substitution were possible. In such manner the compounds NiNi(CN)4·3,5D2O, NiNi(CN)4·5D2O, Ni(NH3)2Ni(CN)4·D2O, and Ni(D2O)2Ni(CN)4·D2O were prepared and thermally they were less stable than the original ones. The substitution by D2O is in agreement with the sorptive properties of the original tetracyanonickelate against different organic compounds using GC, since these could substitute the guest component and sometimes also the ligands during their decomposition.  相似文献   

10.
The vibrational (Raman) spectra of H2O molecules isolated in cavities of beryl, cordierite, bikitaite, natrolite, scolecite, lawsonite, and hemimorphite have been measured in the temperature range of 4–295 K. The influence of van der Waals and hydrogen bonds on the values of frequency, intensity, and half-width of stretching and bending modes of H2O is considered. The spectra of translational vibrations of H2O molecules in crystal cavities are discussed. For the firsts time, the ratio between the frequencies of translation and stretching vibrations of H2O and the dependence of frequencies of bending vibrations on the angle H-O-H in H2O molecule are presented.  相似文献   

11.
Second derivative analysis of Raman spectra of H2O, D2O and HOD in liquid phase at room temperature for parallel and perpendicular polarized modes in the OH and OD stretching regions is reported. Five components obtained at approximately 3215, 3375, 3455, 3535 and 3640 cm−1 for the second derivative plots of Raman spectra of liquid water are explained as due to the presence of three types of associated water species with (i) both OH bonds involved in moderately strong hydrogen bonds (SS), (ii) both OH bonds involved in weak hydrogen bonds (WW), and (iii) one OH bond involved in strong and one in weak hydrogen bonds (SW) respectively. The derivative plots obtained for Raman spectra of D2O and HOD also contain features expected to be present on the basis of this model.  相似文献   

12.
The relative structural and dynamic properties of hydrogen-bonding between Pyrimidine (Pmd) + H2O and Pmd + D2O, and 4-Methylpyrimidine (Mpmd) + H2O and Mpmd + D2O are investigated experimentally by linear Raman spectroscopy using Raman difference spectroscopic (RDS) technique. The focus has been given to the ring breathing mode (ν1). The effect of methylation on the Pmd ring has been studied in terms of wavenumber shift (Δν), peak-position and linewidth variation with mole fraction of the solvent. The wavenumber shift has been calculated by assuming the Voigt profile of the Raman band. In order to explain our experimental results, we have optimized single Pmd and 4Mpmd molecules and their various complexes with H2O and D2O in the stoichiometric ratio of 1:1, 1:2, 1:3 and 1:4 by employing DFT/B3LYP functional with 6-311+G(d,p) basis set using Gaussian software. There is a good correspondence between experimental and theoretical results. Our result reveals that with RDS technique, Δν of a band up to 1/100th of the FWHM can be measured precisely.  相似文献   

13.
The near-infrared absorption spectra (9500 to 11000 cm–1) of HOD, 20 mol% in D2O were measured at temperatures between 4 and 55°C and pressures up to 500 MPa. From the analysis of the spectra, the following conclusions are drawn. (1) At temperatures below about 38°C, the ice I-like bulky structure is destroyed to form the dense structure which reflects the high-pressure ice-like structure as the pressure is increased. (2) At temperatures above about 38°C, the bulky structure hardly remains at atmospheric pressure and the formation of dense structure proceeds monotonically with increasing pressure. The results and conclusion obtained in the present paper agrees with those obtained for pure H2O water in the previous investigation.  相似文献   

14.
Hartree-Fock plus MP2 corrections are reported for the vibrational frequencies in (H2O)2 and (D2O)2 and in the cubic octamers (H2O)8 and (D2O)8. The motivation was the inelastic incoherent neutron scattering of ice as studied experimentally by Li et al. (J.-C. Li, D. Londono, D.K. Ross, J.L. Finney, S.M. Bennington and A.D. Taylor (1992). J. Phys. Cond. Matter, 4, 2109). Some contact is made between our results and these experiments, and also with earlier infrared and Raman studies of Bertie and coworkers.  相似文献   

15.
Aminomonosaccharides (glucosamine, galactosamine, and mannosamine) in H2O and D2O were ionized by atmospheric pressure chemical ionization (APCI) and their fragmentation patterns were investigated to identify them. All the aminomonosaccharides showed the same fragment ions but their relative ion intensities were different. Major product ions generated in H2O were [M + H]+, [M + H – H2O]+, and [2M + H – 3H2O]+, while in D2O were [MD6 + D]+, [MD6 + D – D2O]+, and [2MD6 + D – D2O – 2HDO]+. At a high fragmentor voltage above 120 V, the relative ion intensities of the major product ions showed different trends according to the aminomonosaccharides. For the use of H2O as solvent and eluent, the order of the ion intensity ratio of [M + H – H2O]+/[2M + H – 3H2O]+ was galactosamine > mannosamine > glucosamine. When using D2O as solvent and eluent, the order of the ion intensity ratios of [MD6 + D – D2O]+/[MD6 + D]+ and [2MD6 + D – D2O – 2HDO]+/[MD6 + D]+ was mannosamine > galactosamine > glucosamine. It was found that glucosamine, galactosamine, and mannosamine could be distinguished by the specific trends of the major product ion ratios in H2O and D2O. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
In searching for H5O2+-centered water clusters, we employed vibrational predissociation spectroscopy and ab initio calculations. Structures of the clusters were characterized by the free- and hydrogen-bonded-OH stretches of ion cores and solvent molecules. Systematic examination of H+(H2O)5–7 in a supersonic expansion reveals the presence of both cyclic and noncyclic forms of H5O2+-centered water clusters. The proton transfer intermediate H5O2+(H2O)4 was identified, for the first time, by its characteristic hydrogen-bonded-OH stretches of the ion core at 3178 cm?1. Also discovered at n = 7 is the H5O2+-containing five-membered ring isomer, whose existence is evidenced by the observation of a bonded-OH stretching doublet at 3544 and 3555 cm?1 of the solvent molecules. The observations are in accord with ab initio calculations which forecast that H5O2+(H2O)4 and H5O2+(H2O)5 are, respectively, the lowest-energy isomers of protonated water hexamers and heptamers.  相似文献   

17.
Tellurium–peroxo complexes in aqueous solutions have never been reported. In this work, ammonium peroxotellurates (NH4)4Te2(μ‐OO)2(μ‐O)O4(OH)2 ( 1 ) and (NH4)5Te2(μ‐OO)2(μ‐O)O5(OH)?1.28 H2O?0.72 H2O2 ( 2 ) were isolated from 5 % hydrogen peroxide aqueous solutions of ammonium tellurate and characterized by single‐crystal and powder X‐ray diffraction analysis, by Raman spectroscopy and thermal analysis. The crystal structure of 1 comprises ammonium cations and a symmetric binuclear peroxotellurate anion [Te2(μ‐OO)2(μ‐O)O4(OH)2]4?. The structure of 2 consists of an unsymmetrical [Te2(μ‐OO)2(μ‐O)O5(OH)]5? anion, ammonium cations, hydrogen peroxide, and water. Peroxotellurate anions in both 1 and 2 contain a binuclear Te2(μ‐OO)2(μ‐O) fragment with one μ‐oxo‐ and two μ‐peroxo bridging groups. 125Te NMR spectroscopic analysis shows that the peroxo bridged bitellurate anions are the dominant species in solution, with 3–40 %wt H2O2 and for pH values above 9. DFT calculations of the peroxotellurate anion confirm its higher thermodynamic stability compared with those of the oxotellurate analogues. This is the first direct evidence for tellurium–peroxide coordination in any aqueous system and the first report of inorganic tellurium–peroxo complexes. General features common to all reported p‐block element peroxides could be discerned by the characterization of aqueous and crystalline peroxotellurates.  相似文献   

18.
Densities of 3-methylpyridine (3-MP) + water and 3-methylpyridine + heavy water were measured in the 3-MP mole fraction range 0.002–0.04 from 298 to 318 K. The excess molar volumes of 3-MP + D2O mixtures were found to be more negative than those of 3-MP + H2O mixtures. The partial molar volume of 3-MP at infinite dilution is smaller in D2O than in H2O which suggests that 3-MP causes a structure-breaking effect in water which is more pronounced in D2O. It was found that the volume change with concentration in dilute solutions of 3-MP in water and heavy water can be adequately described by the pair-wise interaction of the solute molecules. The molal volume second-virial coefficient, V xx , is positive indicating that the water molecules are less structured in the cospheres of the solute pairs than in the bulk solvent. The temperature dependence of V xx displays a maximum at around 308 K in the case of D2O solutions, whereas V xx increases almost linearly with temperature in H2O solutions.  相似文献   

19.
The first and second bond dissociation energies for H2O have been calculated in anab initio manner using a multistructure valence-bond scheme. The basis set consisted of a minimal number of non-orthogonal atomic orbitals expressed in terms of gaussian-lobe functions. The valence-bond structures considered properly described the change in the molecular system as the hydrogen atoms were individually removed to infinity. The calculated equilibrium geometry for the H2O molecule has an O-H bond length of 1.83 Bohrs and an HOH bond angle of 106.5°. With 49 valence-bond structures the energy of H2O at this geometry was ?76.0202 Hartrees. The calculated equilibrium bond length for the OH radical was 1.86 Bohrs and the energy, using the same basis set, was ?75.3875 Hartrees. After correction for zero point energies the calculated bond dissociation energies are: H2O → OH + H, D1=75.38 kcal/mole and OH → O+H, D2=54.79 kcal/mole.  相似文献   

20.
The vibrational spectra (IR and Raman) of CHCl2PO3H2 and its anions in H2O and D2O solutions are reported. The IR spectra of the solid dibasic sodium and potassium salts, the solid normal and O-deuterated monobasic sodium and potassium salt and the solid normal and O-deuterated acid are discussed. The principal results of the normal coordinate analysis of the compounds are tabulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号