首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A hybrid cavity magnomechanical system to transfer the bipartite entanglements and achieve the strong microwave photon–phonon entanglement based on the reservoir engineering approach is constructed. The magnon mode is coupled to the microwave cavity mode via magnetic dipole interaction and to the phonon mode via magnetostrictive force (optomechanical-like). It is shown that the initial magnon-phonon entanglement can be transferred to the photon-phonon subspace in the case of these two interactions cooperating. In the reservoir-engineering parameter regime, the initial entanglement is directionally transferred to the photon-phonon subsystem, so a strong bipartite entanglement in which the magnon mode acts as the cold reservoir to effectively cool the Bogoliubov mode delocalized over the cavity and the mechanical deformation mode is obtained. Moreover, dual-mode cooling is realized by engineering the dissipation of photon and phonon modes within the target mode, which allows entanglement to be further enhanced. The results indicate that the steady-state entanglement is robust against temperature. The dual-mode cooling reservoir engineering scheme can potentially be extended to other three-mode quantum systems.  相似文献   

2.
A scheme that harnesses magnon squeezing under weak pump driving within a cavity magnomechanical system to achieve a robust magnon (photon) blockade is proposed. Through meticulous analytical calculations of optimal parametric gain and detuning values, the objective is to enhance the second-order correlation function. The findings demonstrate a substantial magnon blockade effect under ideal conditions, accompanied by a simultaneous photon blockade effect. Impressively, both numerical and analytical results are found to be in complete accord, providing robust validation for the consistency of the findings. It is anticipated that the proposed scheme will serve as a pioneering approach toward the practical realization of magnon (photon) blockade in experimental cavity magnomechanical systems.  相似文献   

3.
This study presents nonreciprocal transmission and nonreciprocal magnon–phonon entanglement in a spinning microwave magnomechanical system. This system consists of microwave photons, magnon modes, and phonons. These are created by the vibrational mode of a yttrium iron garnet sphere. This investigation reveals that nonreciprocity is caused by the light that is circulating in a resonator that is experiencing a Fizeau shift. This leads to a difference in the effective detuning frequency of the photon for forwarding and backward drives. A super-strong transmission isolation rate (>100 dB) and a strong entanglement isolation rate (≈50 dB) are obtained by applying the experimental parameters. This scheme opens a new route for exploiting a variety of nonreciprocal effects, and it provides the theoretical basis for the design and realization of magnetically controllable isolators and diodes.  相似文献   

4.
We propose to realize the ground state cooling of magnomechanical resonator in a parity–time (PT)-symmetric cavity magnomechanical system composed of a loss ferromagnetic sphere and a gain microwave cavity. In the scheme, the magnomechanical resonator can be cooled close to its ground state via the magnomechanical interaction, and it is found that the cooling effect in PT-symmetric system is much higher than that in non-PT-symmetric system. Resorting to the magnetic force noise spectrum, we investigate the final mean phonon number with experimentally feasible parameters and find surprisingly that the ground state cooling of magnomechanical resonator can be directly achieved at room temperature. Furthermore, we also illustrate that the ground state cooling can be flexibly controlled via the external magnetic field.  相似文献   

5.
Generation of strong stationary optical and mechanical squeezing is proposed for the linear‐and‐quadratic optomechanical system, where two cavity modes induce linear and quadratic optomechanical couplings, respectively. Through the linearization treatment, linearized coupling between cavity mode and mechanical mode and the mechanical parametric amplification process are achievable and controllable by independent driving lasers. Optical and mechanical squeezing are generated following different mechanisms. Optical squeezing works in the strong coupling regime, and mechanical amplification would push the system close to instability threshold, which could deeply improve ponderomotive squeezing even significantly beyond the 3 dB squeezing limit. Mechanical squeezing is generated based on the reservoir engineering method, where parametric amplification induces the squeezing transformation of mechanical mode; and linearized coupling, which operates in the red‐sideband and weak coupling limits, induces the ground‐state cooling of transformed mechanical mode. Finally, the original mechanical mode would be squeezed, which could also exceed 3 dB limit.  相似文献   

6.
三能级原子系统中原子偶极压缩和光场压缩间的关联   总被引:11,自引:0,他引:11  
通过考察三能级原子与单模和双模场相互作用系统中原子偶极压缩和光场压缩随时间的演化规律, 研究了原子偶极压缩与光场压缩之间的关系, 讨论了原子偶极压缩与光场压缩之间相互转换的特征, 并给出了初始处于偶极压缩状态的原子辐射压缩光的条件。  相似文献   

7.
A scheme for nonreciprocal mechanical squeezing (NMS) based on the three‐mode optomechanical interaction is proposed. In this scheme, a mechanical mode couples to a spinning whispering‐gallery‐cavity (WGC) mode and to an optical mode. An external laser is coupled into and thus drives the WGC via a waveguide. Mechanical squeezing results from the joint effect of the mechanical intrinsic nonlinearity and the quadratic optomechanical coupling, which, in the presence of strong thermal noise, is still considerable, while the nonreciprocity originates from the optical Sagnac effect. There are two NMS areas in the parametric space, one works for the laser driving from the left of the waveguide and another, from the right. For a given spinning speed of the WGC, the squeezing values in these two areas are equal if the corresponding detunings of the WGC differ from each other by two‐times of the Sagnac–Fizeau shift. At the red‐detuning resonance, the analytical results for the mechanical squeezing and cooling are obtained. The NMS scheme is robust to the thermal noise of the mechanical environment.  相似文献   

8.
廖庆洪  叶杨  李红珍  周南润 《物理学报》2018,67(4):40302-040302
研究了金刚石氮空位中心(NV色心)同时耦合腔场和机械振子系统中声子场的方差压缩动力学特性,分析了金刚石NV色心初态和NV色心与机械振子耦合强度对声子场方差压缩影响.结果发现:可以制备压缩时间长、压缩幅度大的声子场压缩态,其物理原因是机械振子具有最大相干性,并且通过调控NV色心初态以及磁场梯度可以实现对机械振子方差压缩非经典特性的操控,从而在理论上提供了一种调控声子场方差压缩的方式.  相似文献   

9.
We propose an efficient scheme for realizing two-mode squeezing for two cavity modes with an atomic ensemble trapped in the cavity and driven by two classical fields. Through a suitable choice of the driving classical fields, the evolution dynamics of the two cavity modes is decoupled with the atomic system and described by a two-mode squeezing operator. We show that a highly squeezed state can be obtained at the output even with a bad cavity. The required experimental techniques are within the scope of what can be obtained in the BEG-cavity setup.  相似文献   

10.
A squeezed‐coherent‐cat state (SCCS) in a mechanical system not only plays an important role for macroscopic quantum coherence, but also can be a carrier for quantum information. A scheme to generate a SCCS in a two‐mode optomechanical system is proposed, in which the modulated hopping interaction of two cavities is introduced. The two cavity modes couple with the same mechanical mode with linear and quadratic interaction, respectively. The SCCS is analytically deduced under an appropriate initial state, and the average phonon number and the parameter of squeeze are numerically calculated. Wigner function shown the properties of superposition and squeezing is plotted. Including the dissipation of the environment, the results show that a high quality mechanical resonator and a low noise environment are required to obtain high fidelity.  相似文献   

11.
In the conventional scheme of generating strong mechanical squeezing by the joint effect between mechanical parametric amplification and sideband cooling, the resolved sideband condition is required so as to overcome the quantum backaction heating. In the unresolved sideband regime, to suppress the quantum backaction, a χ(2) nonlinear medium is introduced to the cavity. The result shows that the quantum backaction heating effect caused by unwanted counter-rotating term can be completely removed. Hence, the strong mechanical squeezing can be obtained even for the system far from the resolved-sideband regime.  相似文献   

12.
It is shown how to generate stationary entanglement between light and microwave in a hybrid opto-electro-magnonical system which mainly consists of a microwave cavity, a yttrium iron garnet (YIG) sphere, and a nanofiber. The optical modes in nanofiber can evanescently be coupled to whispering gallery modes, that are able to interact with magnon mode via spin–orbit interaction, in YIG sphere, while the microwave cavity photons and magnons are coupled through magnetic dipole interaction simultaneously. Under reasonable parameter regimes, pretty amount of entanglement can be generated, and it also shows persistence against temperature. The present work is expected to provide a new perspective for building more advanced and comprehensive quantum networks along with magnons for fast-developing quantum technologies and for studying the macroscopic quantum phenomena.  相似文献   

13.
设计了一种阈值下的简并光学参量振荡腔用于产生多模压缩光束,并且利用"薄晶体近似"的方法分析了这个光学参量振荡腔,得到了输出多模压缩光束的噪声谱.数值模拟了多模压缩光束的压缩度和抽运光场或者振荡腔的失谐量之间的关系,得出只有适当选择本底光的相位,抽运光的幅度以及共焦腔的失谐量时,才可以探测到好的信号场噪声谱压缩度.  相似文献   

14.
We seek to investigate, employing stochastic differential equations, the squeezing and statistical properties of the cavity mode of a degenerate parametric oscillator driven by coherent light and coupled to a squeezed vacuum reservoir. Contrary to the case of the squeezed vacuum reservoir, it is found that the driving coherent light has no effect on the squeezing properties of the cavity mode. However, both the squeezed vacuum reservoir and the driving coherent light increase the mean photon number of the cavity mode.  相似文献   

15.
A scheme to realize the accelerated and robust generation of W state in a cavity quantum electrodynamics (QED) system by combining parametric amplification (PA) with inverse Hamiltonian engineering (IHE) is proposed. The atom-cavity coupling strength can be exponentially enhanced via parametrically squeezing the cavity mode, which facilitates the generation of W state. Moreover, the evolution of the system can be optimized with suppressing the populations of the intermediate states. Numerical simulations show that the scheme is fast and high-fidelity, immune to systematic parameter deviations, robust against spontaneous emission of atoms, and decay of cavities. Therefore, this scheme may provide some useful applications in entanglement generation.  相似文献   

16.
As the quantum states of nitrogen vacancy (NV) center can be coherently manipulated and obtained at room temperature, it is important to generate steady-state spin squeezing in spin qubits associated with NV impurities in diamond. With this task we consider a new type of a hybrid magneto-nano-electromechanical resonator, the functionality of which is based on a magnetic-field induced deflection of an appropriate cantilever that oscillates between NV spins in diamond. We show that there is bistability and spin squeezing state due to the presence of the microwave field, despite the damping from mechanical damping. Moreover, we find that bistability and spin squeezing can be controlled by the microwave field and the parameter VzVz. Our scheme may have the potential application on spin clocks, magnetometers, and other measurements based on spin–spin system in diamond nanostructures.  相似文献   

17.
We propose a ground-state cooling scheme for a nanomechanical oscillator(NMO)that interacts with an optical cavity via radiation pressure at one side and with a superconducting microwave cavity via a capacitor at the other side.By driving these two cavities on their respective red sidebands with extra laser and microwave fields,the NMO’s dual cooling channel is created through electro-optomechanical cooperation.Differing from the conventional optomechanical system with a single optical cavity wherein ground-state cooling is limited in the resolved sideband,the proposed scheme allows the optical cavity to function in an unresolved sideband regime under the cooperation of a microwave cavity with a high quality factor,or vice versa.In a weak coupling regime we demonstrate that the NMO can be cooled to near its ground-state from a finite temperature with a cooling rate that is significantly faster than that of the single-cavity optomechanical system.The heating process can be completely suppressed by the cooperation of the dual cooling channel by appropriately selecting the system’s parameters.With a decreasing thermal phonon number,the numerical results of final mechanical occupancy gradually approach the analytical cooling limit.  相似文献   

18.
同轴虚阴极谐振效应研究   总被引:3,自引:0,他引:3       下载免费PDF全文
罗雄  廖成  孟凡宝  张运俭 《物理学报》2006,55(11):5774-5778
中国工程物理研究院应用电子学研究所的一些实验表明由阳极反射板、阳极网和阴极发射的电子束形成的环状虚阴极围成的准谐振腔是决定同轴虚阴极输出微波功率和传输模式的关键所在. 在二极管电压350kV,电流23kA条件下,获得了500MW的微波输出功率,能量转换效率约6.2%,工作频率3.3GHz,输出微波主要由TM01模式和TE11模式组成. 对同轴虚阴极的谐振效应进行了分析. 关键词: 高功率微波 同轴虚阴极 谐振腔 模式竞争  相似文献   

19.
陈华俊  米贤武 《光子学报》2014,40(10):1474-1483
研究了Fabry-Perot光学腔中包含一个光学参量放大器来增强腔场与机械振子之间的耦合的光机械动力学行为.在解析边带机制下用量子郞之万方程具体研究了振子的涨落光谱、光学多稳态行为、机械阻尼与修正共振频移和基态冷却.通过数值解讨论了辐射压力诱导机械振子和腔场的稳态振幅所展现的光学多稳态行为,同时也分析了辐射压力引起的修正共振频移和机械阻尼与参量增益、输入激光功率和参量相位这三个因素的关系.此外,随着调节泵浦场的参量相位,振子的涨落光谱呈现简正模式分裂.通过精确求解最终有效声子数论证了基态冷却.结果表明,机械振子的冷却由初始浴温度、机械品质因数和参量相位这个三个因素控制.参量相提供一个新的方法来操控非线性光机械动力学.  相似文献   

20.
杨贞标  苏万钧 《中国物理》2007,16(2):435-440
An alternative scheme is proposed for engineering three-dimensional maximally entangled states for two modes of a superconducting microwave cavity. In this scheme, an appropriately prepared four-level atom is sent through a bimodal cavity. During its passing through the cavity, the atom is coupled resonantly with two cavity modes simultaneously and addressed by a classical microwave pulse tuned to the required transition. Then the atomic states are detected to collapse two modes onto a three-dimensional maximally entangled state. The scheme is different from the previous one in which two nonlocal cavities are used. A comparison between them is also made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号