首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
Strontium has a beneficial role on bone remodeling and is proposed for the treatment of pathologies associated to excessive bone resorption, such as osteoporosis. Herein, the possibility to utilize a biomimetic scaffold as strontium delivery system is explored. Porous 3D gelatin scaffolds containing about 30% of strontium substituted hydroxyapatite (SrHA) or pure hydroxyapatite (HA) are prepared by freeze‐drying. The scaffolds display a very high open porosity, with an interconnectivity of 100%. Reinforcement with further amount of gelatin provokes a modest decrease of the average pore size, without reducing interconnectivity. Moreover, reinforced scaffolds display reduced water uptake ability and increased values of mechanical parameters when compared to as‐prepared scaffolds. Strontium displays a sustained release in phosphate buffered saline: the quantities released after 14 d from as‐prepared and reinforced scaffolds are just 14 and 18% of the initial content, respectively. Coculture of osteoblasts and osteoclasts shows that SrHA‐containing scaffolds promote osteoblast viability and activity when compared to HA‐containing scaffolds. On the other hand, osteoclastogenesis and osteoclast differentiation are significantly inhibited on SrHA‐containing scaffolds, suggesting that these systems could be usefully applied for local delivery of strontium in loci characterized by excessive bone resorption.  相似文献   

2.
采用明胶为原料,以甲基丙烯酸缩水甘油酯和亚硫酸氢钠为改性剂,在明胶分子链上引入极性基团磺酸基,制得新型磺化明胶水凝胶。采用红外光谱(FT-IR)、X射线光电子能谱(XPS)和扫描电镜(SEM)对其组成和结构进行了表征。通过动态黏弹谱仪(DMA)测定水凝胶的储能模量,探讨不同外加电场作用下该水凝胶的电场响应性能。随着明胶水凝胶中S元素的原子百分比的增大,在外加电场下,胶体的电场响应能力增强。当外加电场为1.6kV/mm、明胶水凝胶中S的原子百分比为1.59%时,水凝胶对电场作用的响应最明显,储能模量的增加率为31.86%。  相似文献   

3.
Recently, temperature-resistant hydrogels, hydrogels which are freezing- and dehydration-resistant, have garnered considerable attention in the scientific community as they extend the rage of application of hydrogels to arid and/or cold environments. Besides, these hydrogels exhibit tunable conductivity and mechanical performance while offering excellent biocompatibility and flexibility, making them interesting candidates for flexible and wearable electronics and (bio)sensors. Several biomimetic strategies were developed to fabricate anti-freezing and anti-dehydration hydrogels with a diversity of merits, such as high strain resistance and conductivity, even at sub-zero temperatures, and employed as (bio)sensors, electrodes, and energy-storage devices. This review summarizes the recent advances in the preparation and application of temperature-resistant hydrogels, indicates issues of the state-of-the-art hydrogels, and offers potential future research directions.  相似文献   

4.
Surface active gelatins were formed by covalent attachment of hydrophobic groups to gelatin molecules by reactingN-hydroxysuccinimide esters of various fatty acids (C4–C16) with the lysine groups. The surface activity was evaluated by emulsification and foaming properties, and by adsorption at the oil–water interface. It was found that, in general, the modified gelatins are more surface active than the native gelatin. The increase in hydrophobic chain length and the number of attached alkyl chains per gelatin molecule leads to a decrease in the emulsion droplet's size and to more stable emulsions. Adsorption isotherms, at the o/w interface, show much higher surface concentration, at saturation, of the modified gelatin than the native gelatin. The modified gelatins also have high foaming ability and a high foam stability, while the maximal foam activity is obtained by the C8modified gelatin. The foaming properties of the surface-active gelatins were also compared to that of sodium dodecyl sulfate (SDS) and it was found that below the CMC of SDS, both foam activity and stability were higher for the modified gelatins. On the other hand, above the CMC the foam activity of SDS was higher, but the foam stability was lower than for C8–C16-modified gelatins.  相似文献   

5.
6.
In this study, the cyto‐compatibility and cellular functionality of cell‐laden gelatin‐methacryloyl (Gel‐MA) hydrogels fabricated using a set of photo‐initiators which absorb in 400–450 nm of the visible light range are investigated. Gel‐MA hydrogels cross‐linked using ruthenium (Ru) and sodium persulfate (SPS), are characterized to have comparable physico‐mechanical properties as Gel‐MA gels photo‐polymerized using more conventionally adopted photo‐initiators, such as 1‐[4‐(2‐hydroxyethoxy)‐phenyl]‐2‐hydroxy‐2‐methyl‐1‐propan‐1‐one (Irgacure 2959) and lithium phenyl(2,4,6‐trimethylbenzoyl) phosphinate (LAP). It is demonstrated that the Ru/SPS system has a less adverse effect on the viability and metabolic activity of human articular chondrocytes encapsulated in Gel‐MA hydrogels for up to 35 days. Furthermore, cell‐laden constructs cross‐linked using the Ru/SPS system have significantly higher glycosaminoglycan content and re‐differentiation capacity as compared to cells encapsulated using I2959 and LAP. Moreover, the Ru/SPS system offers significantly greater light penetration depth as compared to the I2959 system, allowing thick (10 mm) Gel‐MA hydrogels to be fabricated with homogenous cross‐linking density throughout the construct. These results demonstrate the considerable advantages of the Ru/SPS system over traditional UV polymerizing systems in terms of clinical relevance and practicability for applications such as cell encapsulation, biofabrication, and in situ cross‐linking of injectable hydrogels.  相似文献   

7.
8.
Self‐healing hydrogels have been studied by many researchers via multiple cross‐linking approaches including physical and chemical interactions. It is an interesting project in multifunctional hydrogel exploration that a water soluble polymer matrix is cross‐linked by combining the ionic coordination and the multiple hydrogen bonds to fabricate self‐healing hydrogels with injectable property. This study introduces a general procedure of preparing the hydrogels (termed gelatin‐UPy‐Fe) cross‐linked by both ionic coordination of Fe3+ and carboxyl group from the gelatin and the quadruple hydrogen bonding interaction from the ureido‐pyrimidinone (UPy) dimers. The gelatin‐UPy‐Fe hydrogels possess an excellent self‐healing property. The effects of the ionic coordination of Fe3+ and quadruple hydrogen bonding of UPy on the formation and mechanical behavior of the prepared hydrogels are investigated. In vitro drug release of the gelatin‐UPy‐Fe hydrogels is also observed, giving an intriguing glimpse into possible biological applications.

  相似文献   


9.
A novel injectable in situ gelling drug delivery system (DDS) consisting of biodegradable N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) nanoparticles and thermosensitive chitosan/gelatin blend hydrogels was developed for prolonged and sustained controlled drug release. Four different HTCC nanoparticles, prepared based on ionic process of HTCC and oppositely charged molecules such as sodium tripolyphosphate, sodium alginate and carboxymethyl chitosan, were incorporated physically into thermosensitive chitosan/gelatin blend solutions to form the novel DDSs. Resulting DDSs interior morphology was evaluated by scanning electron microscopy. The effect of nanoparticles composition on both the gel process and the gel strength was investigated from which possible hydrogel formation mechanisms were inferred. Finally, bovine serum albumin (BSA), used as a model protein drug, was loaded into four different HTCC nanoparticles to examine and compare the effects of controlled release of these novel DDSs. The results showed that BSA could be sustained and released from these novel DDSs and the release rate was affected by the properties of nanoparticle: the slower BSA release rate was observed from DDS containing nanoparticles with a positive charge than with a negative charge. The described injectable drug delivery systems might have great potential application for local and sustained delivery of protein drugs.  相似文献   

10.
Synthetic substrates with defined chemical and structural characteristics may potentially be prepared to mimic the living ECM to regulate cell adhesion and growth. Hydrogels with cell‐adhesive peptides (0.28 ± 0.03 nmol peptide · cm?2, TTA‐R‐0.5; and 0.91 ± 0.12 nmol peptide · cm?2, TTA‐R‐2.0) and/or micro‐scaled topographical patterns (10, 25, and 80 µm grooves) are prepared using enzymatic polymerization. The adherent morphology and proliferation of C2C12 skeletal myoblasts and human aortic smooth muscle cells (hAoSM) on the hydrogels are studied. The newly developed hydrogels may be useful in investigating the roles of cell adhesion and substrate surface properties in the communication of adherent cells with the ECM.

  相似文献   


11.
Light‐induced release systems can be triggered remotely and are of interest for many controlled release applications due to the possibility for spatio‐temporal release control. In this study a biotin‐functionalized photocleavable macromer is incorporated with an o‐nitrobenzyl moiety into gelatin methacryloyl(‐acetyl) hydrogels via radical cross‐linking. Stronger immobilization of streptavidin‐coupled horseradish peroxidase occurs in linker‐functionalized hydrogels compared to pure gelatin methacryloyl(‐acetyl) hydrogels, and a controlled release of the streptavidin conjugate upon UV‐irradiation is possible. Liquid chromatography coupled to mass spectrometry (LC‐MS) analysis of aqueous linker solutions allows the identification of the main cleavage products and the cleavage kinetics. Thus, it is shown that a significant hydrolysis of the linker occurs at 37 °C. Nevertheless the system reported here is a promising controlled release scaffold for proteins and application in tissue engineering, if background releases of the immobilized drug are tolerable.  相似文献   

12.
These studies provide evidence for the ability of a commercially available, defined, hyaluronan‐gelatin hydrogel, HyStem‐C?, to maintain both mouse embryonic stem cells (mESCs) and human induced pluripotent stem cells (hiPSCs) in culture while retaining their growth and pluripotent characteristics. Growth curve and doubling time analysis show that mESCs and hiPSCs grow at similar rates on HyStem‐C? hydrogels and mouse embryonic fibroblasts and Matrigel?, respectively. Immunocytochemistry, flow cytometry, gene expression and karyotyping reveal that both human and murine pluripotent cells retain a high level of pluripotency on the hydrogels after multiple passages. The addition of fibronectin to HyStem‐C? enabled the attachment of hiPSCs in a xeno‐free, fully defined medium.

  相似文献   


13.
康丁  张洪斌  西成胜好 《化学进展》2014,26(7):1172-1189
结冷胶是一种线型聚阴离子微生物多糖,具有独特的凝胶特性和溶液流变学性质,自发现起即被应用于食品和化妆品中。近年来,随着生物医学学科的发展,天然高分子结冷胶及其水凝胶,在药物传递系统和组织工程材料等领域展现出了广阔的应用前景。结冷胶无毒,具有生物相容性和可生物降解性,所形成的水凝胶透明且稳定性好,并在一定条件下凝胶的力学性质与人体普通组织相近。结冷胶的这些优势使其成为一种良好的生物医用材料的制备来源。但是这种基于结冷胶的水凝胶也有其自身的缺点,如作为组织工程材料缺乏一定的韧性和组织负载能力等。这些不足在很大程度上限制了其在生物医学领域的应用。为了解决上述问题,许多研究者对结冷胶进行了化学和物理的改性。改性后的结冷胶材料在生物医学领域展现出更有发展的应用前景。本文综述了结冷胶凝胶的形成机理以及结冷胶的改性方法,重点详述了结冷胶及其改性材料在生物医学领域中的应用,并指出了结冷胶基组织工程材料在应用上应解决的一些挑战性问题。  相似文献   

14.
Cells interact mechanically with their environment, exerting mechanical forces that probe the extracellular matrix (ECM). The mechanical properties of the ECM determine cell behavior and control cell differentiation both in 2D and 3D environments. Gelatin (Gel) is a soft hydrogel into which cells can be embedded. This study shows significant 3D Gel shrinking due to the high traction cellular forces exerted by the cells on the matrix, which prevents cell differentiation. To modulate this process, Gel with hyaluronic acid (HA) has been combined in an injectable crosslinked hydrogel with controlled Gel–HA ratio. HA increases matrix stiffness. The addition of small amounts of HA leads to a significant reduction in hydrogel shrinking after cell encapsulation (C2C12 myoblasts). We show that hydrogel stiffness counterbalanced traction forces of cells and this was decisive in promoting cell differentiation and myotube formation of C2C12 encapsulated in the hybrid hydrogels.

  相似文献   


15.
Innovative biomaterial‐based concepts are required to improve wound healing of damaged vascularized tissues especially in elderly multimorbid patients. To develop functional hydrogels as 3D cellular microenvironments and as carrier or scavenging systems, e.g., for mediator proteins or proinflammatory factors, collagen fibrils are embedded into a network of photo‐crosslinked acrylated hyaluronan (HA), chondroitin sulfate (CS), or sulfated HA (sHA). After lyophilization, the gels show a porous structure and an improved stability against degradation via hyaluronidase. Gels with CS and sHA bind significantly more lysozyme than HA/collagen gels and retard its release. The proliferation and metabolic activity of endothelial cells are significantly increased on sHA gels compared to CS‐ or only HA‐containing hydrogels. These findings highlight the potential of HA/collagen hydrogels with sulfated glycosaminoglycans to tune the protein binding and release behavior and to directly modulate cellular response. This can be easily translated into biomimetic biomaterials with defined properties to stimulate wound healing.  相似文献   

16.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号