首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 185 毫秒
1.
Long persistent luminescence (LPL) materials of SrAl2O4 doped with Eu2+ or Dy3+ can maintain emission over hours after ceasing the excitation but suffer from insolubility, high cost, and harsh preparation. Recently, organic LPL of guest-host exciplex systems has been demonstrated via an intermediate charge-separated state with flexible design but poor air-stability. Here, we synthesized a nontoxic two-dimensional organic–inorganic metal hybrid halides (OIMHs), called PBA2[ZnX4] with X=Br or Cl and PBA=4-phenylbenzylamine. These materials exhibit stable LPL emission over minutes at room-temperature, which is two orders of magnitude longer than those of previously reported OIMHs. The mechanism study shows that the LPL emission comes from thermally activated charge separation state rather than room-temperature phosphorescence. Moreover, the LPL of PBA2[ZnX4] can be excited by low power sources, representing an effective strategy for developing low-cost and high-stability LPL systems.  相似文献   

2.
Color-tunable dual-mode organic afterglow excited by ultraviolet (UV) and white light was achieved from classical aggregation-caused quenching compounds for the first time. Specifically, two luminescent systems, which could produce significant organic afterglow composed of persistent thermally activated delayed fluorescence and ultralong organic phosphorescence under ambient conditions, were constructed by doping fluorescein sodium and calcein sodium into aluminum sulfate. Their lifetimes surpassed 600 ms, and the dopant concentrations were as low as 5×10−6 wt %. Moreover, the persistent luminescence colors of the materials could be tuned from blue to green and then to yellow by simply varying the concentrations of guest compounds or the temperature in the range of 260–340 K. Inspired by these exciting results, the afterglow materials were used for UV- and white-light-manipulated anti-counterfeiting and preparation of elastomers with different colors of persistent luminescence.  相似文献   

3.
Designing organic afterglow materials with a high efficiency and long lifetime is highly attractive but challenging because of the inherent competition between the luminescence efficiency and lifetime. Here, we propose a simple yet efficient strategy, namely fluorine-induced aggregate-interlocking (FIAI), to realize both an enhanced efficiency and elongated lifetime of afterglow materials by stimulating the synergistic effects of the introduced fluorine atoms to efficiently promote intersystem crossing (ISC) and intermolecular non-covalent interactions for facilitating both the generation of triplet excitons and suppression of non-radiative decays. Thus, the fluorine-incorporated afterglow molecules exhibit greatly enhanced ISC with a rate constant up to 5.84 × 107 s−1 and suppressed non-radiative decay down to 0.89 s−1, resulting in efficient organic afterglow with a simultaneously improved efficiency up to 10.5% and a lifetime of 1.09 s. Moreover, accompanied by the efficient phosphorescence emission especially at cryogenic temperature, color-tunable afterglow was also observed at different temperatures. Therefore, tri-mode multiplexing encryption devices by combining lifetime, temperature and color, and visual temperature sensing were successfully established. The FIAI strategy by addressing fundamental issues of afterglow emission paves the way to develop high-performance organic afterglow materials, opening up a broad prospect of aggregated and excited state tuning of organic solids for emission lifetime-resolved applications.

Through the fluorine-induced aggregate-interlocking (FIAI) strategy, the designed afterglow materials showed both improved quantum yields and prolonged lifetimes by breaking through the intrinsic bottlenecks of organic afterglow.  相似文献   

4.
An organic crystal of 4,4′‐bis(N‐carbazolyl)‐1,1′‐biphenyl (pCBP) exhibits time‐dependent afterglow color from blue to orange over 1 s. Both experimental and computational data confirm that the color evolution results from well‐separated, long‐persistent thermally activated delayed fluorescence (TADF) and room‐temperature phosphorescence (RTP) with different but comparable decay rates. TADF is enabled by a small S1–T1 energy gap of 0.7 kcal mol?1. The good separation of TADF and RTP is due to a 11.8 kcal mol?1 difference in the S0 energies of the S1 and T1 structures, indicating that apart from the excited‐state properties, tuning the ground state is also important for luminescence properties. This afterglow color evolution of pCBP allows its applications in anticounterfeiting and data encryption with high security levels.  相似文献   

5.
Abstract

Amine-tetrachloromethane charge-transfer complexes have recently been shown to be useful intermediates in transition-metal free solar light-assisted organic synthetic chemistry. Of particular promise is the complex of 1,4-diazabicyclo[2.2.2]octane (DABCO) which may serve as a starting point for several potential reactions involving oxidation of organic compounds. Here we disclose the crystal structure of the [DABCO???CCl4] complex, and computational studies of two possible complex structures in their ground state, as well as in their first singlet and first triplet excited states.  相似文献   

6.
Long persistent luminescence (LPL) materials have a unique photophysical mechanism to store light radiation energy for subsequent release. However, in comparison to the common UV source, white‐light (WL) and near‐infrared (NIR) excited LPL is scarce. Herein we report a metal–organic supramolecular box based on a D–π–A‐type ligand. Owing to the integrated one‐photon absorption (OPA) and two‐photon absorption (TPA) attributes of the ligand, the heavy‐atom effect of the metal center, as well as π‐stacking and J‐aggregation states in the supramolecular assembly, LPL can be triggered by all wavebands from the UV to the NIR region. This novel designed supramolecular kit to afford LPL by both OPA and TPA pathways provides potential applications in anti‐counterfeiting, camouflaging, decorating, and displaying, among others.  相似文献   

7.
Long persistent luminescence (LPL) materials have a unique photophysical mechanism to store light radiation energy for subsequent release. However, in comparison to the common UV source, white‐light (WL) and near‐infrared (NIR) excited LPL is scarce. Herein we report a metal–organic supramolecular box based on a D–π–A‐type ligand. Owing to the integrated one‐photon absorption (OPA) and two‐photon absorption (TPA) attributes of the ligand, the heavy‐atom effect of the metal center, as well as π‐stacking and J‐aggregation states in the supramolecular assembly, LPL can be triggered by all wavebands from the UV to the NIR region. This novel designed supramolecular kit to afford LPL by both OPA and TPA pathways provides potential applications in anti‐counterfeiting, camouflaging, decorating, and displaying, among others.  相似文献   

8.
Carbon dots (CDs) have attracted attention in metal‐free afterglow materials, but most CDs were heteroatom‐containing and the afterglow emissions are still limited to the short‐wavelength region. A universal approach to activate the room‐temperature phosphorescence (RTP) of both heteroatom‐free and heteroatom‐containing CDs was developed by one‐step heat treatment of CDs and boric acid (BA). The introduction of an electron‐withdrawing boron atom in composites can greatly reduce the energy gap between the singlet and triplet state; the formed glassy state can effectively protect the excited triplet states of CDs from nonradiative deactivation. A universal host for embedding CDs to achieve long‐lifetime and multi‐color (blue, green, green‐yellow and orange) RTP via a low cost, quick and facile process was developed. Based on their distinctive RTP performances, the applications of these CD‐based RTP materials in information encryption and decryption are also proposed and demonstrated.  相似文献   

9.
The fabrication of room-temperature organic phosphorescence and afterglow materials, as well as the transformation of their photophysical properties, has emerged as an important topic in the research field of luminescent materials. Here, we report the establishment of energy landscapes in dopant-matrix organic afterglow systems where the aggregation states of luminescent dopants can be controlled by doping concentrations in the matrices and the methods of preparing the materials. Through manipulation by thermodynamic and kinetic control, dopant-matrix afterglow materials with different aggregation states and diverse afterglow properties can be obtained. The conversion from metastable aggregation state to thermodynamic stable aggregation state of the dopant-matrix afterglow materials to leads to the emergence of intriguing afterglow transformation behavior triggered by thermal and solvent annealing. The thermodynamically unfavorable reversible afterglow transformation process can also be achieved by coupling the dopant-matrix afterglow system to mechanical forces.  相似文献   

10.
Ambient afterglow luminescence from metal-free organic chromophores would provide a promising alternative to the well-explored inorganic phosphors. However, the realization of air-stable and solution-processable organic afterglow systems with long-lived triplet or singlet states remains a formidable challenge. In the present study, a delayed sensitization of the singlet state of organic dyes via phosphorescence energy transfer from organic phosphors is proposed as an alternative strategy to realize “afterglow fluorescence”. This concept is demonstrated with a long-lived phosphor as the energy donor and commercially available fluorescent dyes as the energy acceptor. Triplet-to-singlet Förster-resonance energy-transfer (TS-FRET) between donor and acceptor chromophores, which are co-organized in an amorphous polymer matrix, results in tuneable yellow and red afterglow from the fluorescent acceptors. Moreover, these afterglow fluorescent hybrids are highly solution-processable and show excellent air-stability with good quantum yields.  相似文献   

11.
An organic crystal of 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (pCBP) exhibits time-dependent afterglow color from blue to orange over 1 s. Both experimental and computational data confirm that the color evolution results from well-separated, long-persistent thermally activated delayed fluorescence (TADF) and room-temperature phosphorescence (RTP) with different but comparable decay rates. TADF is enabled by a small S1–T1 energy gap of 0.7 kcal mol−1. The good separation of TADF and RTP is due to a 11.8 kcal mol−1 difference in the S0 energies of the S1 and T1 structures, indicating that apart from the excited-state properties, tuning the ground state is also important for luminescence properties. This afterglow color evolution of pCBP allows its applications in anticounterfeiting and data encryption with high security levels.  相似文献   

12.
The luminescence of the terpyridine-Eu3+-complex associated with poly(ethyleneoxide) or poly(propyleneoxide) chains has been studied in various fluid or solid environments including silica/poly(alkyleneoxide) nanocomposite materials. Strongly luminescent materials are obtained. Their emission can be tuned by varying the organic/inorganic content and, generally, the structure of the host material. In this respect, the complex luminescence itself is a sensor of the structural aspects of the host material.  相似文献   

13.
Ambient afterglow luminescence from metal‐free organic chromophores would provide a promising alternative to the well‐explored inorganic phosphors. However, the realization of air‐stable and solution‐processable organic afterglow systems with long‐lived triplet or singlet states remains a formidable challenge. In the present study, a delayed sensitization of the singlet state of organic dyes via phosphorescence energy transfer from organic phosphors is proposed as an alternative strategy to realize “afterglow fluorescence”. This concept is demonstrated with a long‐lived phosphor as the energy donor and commercially available fluorescent dyes as the energy acceptor. Triplet‐to‐singlet Förster‐resonance energy‐transfer (TS‐FRET) between donor and acceptor chromophores, which are co‐organized in an amorphous polymer matrix, results in tuneable yellow and red afterglow from the fluorescent acceptors. Moreover, these afterglow fluorescent hybrids are highly solution‐processable and show excellent air‐stability with good quantum yields.  相似文献   

14.
Applications of persistent luminescence phosphors as night or dark‐light vision materials in many technological fields have fueled up a growing demand for rational control over the emission profiles of the phosphors. This, however, remains a daunting challenge. Now a unique strategy is reported to fine‐tune the persistent luminescence by using all‐inorganic CsPbX3 (X=Cl, Br, and I) perovskite quantum dots (PeQDs) as efficient light‐conversion materials. Full‐spectrum persistent luminescence with wavelengths covering the entire visible spectral region is achieved through tailoring of the PeQD band gap, in parallel with narrow bandwidth of PeQDs and highly synchronized afterglow decay owing to the single energy storage source. These findings break through the limitations of traditional afterglow phosphors, thereby opening up opportunities for persistent luminescence materials for applications such as a white‐emitting persistent light source and dark‐light multicolor displays.  相似文献   

15.
EuL3 · phen complex compounds (L is benzoylacetone, dibenzoylmethane, or thenoyltrifluoroacetone; phen is 1,10-phenanthroline) were synthesized in a perfluorosulfonic membrane. The results of adsorption measurements suggest that the complexes experience steric hindrances in the membrane pores. The luminescence from intercalates is sensitized due to the increase in the degree of population of the 5 D 0 excited state of europium(III) caused by the transfer of energy from the ligands. Depending on the type of β-diketonate ligand, the adsorption of water on the modified membrane can enhance or suppress the luminescence from the complex.  相似文献   

16.
Nanoparticles for photothermal therapy: Real‐time temperature monitoring is critical to reduce the nonspecific damage during photothermal therapy (PTT); however, PTT agents that can emit temperature‐related signals are rare and limited to few inorganic nanoparticles. We herein synthesize a semiconducting polymer nanococktail (SPNCT) that can not only convert photo‐energy to heat but also emit temperature‐correlated luminescence after cessation of light excitation. Such an afterglow luminescence of the SPNCT detects tumors more sensitively than fluorescence as a result of the elimination of tissue autofluorescence, while its temperature‐dependent nature allows tumor temperature to be optically monitored under near‐infrared (NIR) laser irradiation. Thus, SPNCT represents the first organic optical nanosystem that enables optical‐imaging guided PTT without real‐time light excitation.  相似文献   

17.
The multiple metastable excited states provided by excited-state intramolecular proton transfer (ESIPT) molecules are beneficial to bring temperature-dependent and color-tunable long persistent luminescence (LPL). Meanwhile, ESIPT molecules are intrinsically suitable to be modulated as D-π-A structure to obtain both one/two-photon excitation and LPL emission simultaneously. Herein, we report the rational design of a dynamic CdII coordination polymer ( LIFM-106 ) from ESIPT ligand to achieve the above goals. By comparing LIFM-106 with the counterparts, we established a temperature-regulated competitive relationship between singlet excimer and triplet LPL emission. The optimization of ligand aggregation mode effectively boost the competitiveness of the latter. In result, LIFM-106 shows outstanding one/two-photon excited LPL performance with wide temperature range (100–380 K) and tunable color (green to red). The multichannel radiation process was further elucidated by transient absorption and theoretical calculations, benefiting for the application in anti-counterfeiting systems.  相似文献   

18.
Manipulating the molecular orbital properties of excited states and the subsequent relaxation processes can greatly alter the emission behaviors of luminophores. Herein we report a vivid example of this, with luminescence conversion from thermally activated delayed fluorescence (TADF) to ultralong room-temperature phosphorescence (URTP) via a facile substituent effect on a rigid benzothiazino phenothiazine tetraoxide (BTPO) core. Pristine BTPO with multiple heteroatoms shows obvious intramolecular charge transfer (ICT) excited states with small exchange energy, featuring TADF. Via delicately functionalizing the BTPO core with peripheral moieties, the excited states of the BTPO derivatives become a hybridized local and charge transfer (HLCT) state in the S1 state and a local excitation (LE) dominated HLCT state in the T1 state, with enlarged energy bandgaps. Upon dispersion in a polymer matrix, the BTPO derivatives exhibit a persistent bright green afterglow with long lifetimes of up to 822 ms and decent quantum yields of up to 11.6%.

The decoration of a BTPO core results in a change in the luminescence nature from TADF to URTP. The phosphors in an amorphous PMMA matrix showed monomeric URTP with phosphorescence lifetimes of up to 822 ms and quantum yields of up to 11.6%.  相似文献   

19.
In recent years, pure organic room-temperature phosphorescence (RTP) with highly efficient and long-persistent afterglow has drawn substantial awareness. Commonly, spin-orbit coupling can be improved by introducing heavy atoms into pure-organic molecules. However, this strategy will simultaneously increase the radiative and non-radiative transition rate, further resulting in dramatic decreases in the excited state lifetime and afterglow duration. Here in this work, a highly symmetric bird-like structure tetraphenylene (TeP), and its three symmetrical halogenated derivatives (TeP−F, TeP−Cl and TeP−Br) are synthesized, while their RTP properties and mechanisms are systematically investigated by both theoretical and experimental approaches. As the results, the rigid, highly twisted conformation of TeP restricts the non-radiative processes of RTP and gives rise to the enhancement of electron-exchange, which can contribute to the RTP radiation process. Despite the faint RTP of the bromine and chlorine-substituted ones (TeP−Br, TeP−Cl), the fluoro-substituted TeP−F exhibited a long phosphorescent lifetime up to 890 ms, corresponding to an extremely long RTP afterglow over 8 s, which could be incorporated into the best series of non-heavy-atom RTP materials reported in previous literature.  相似文献   

20.
In the field of organic light-emitting diodes, thermally activated delayed fluorescence (TADF) materials have achieved great performance. The key factor for this performance is the small energy gap (ΔEST) between the lowest triplet (T1) and singlet excited (S1) states, which can be realized in a well-separated donor-acceptor system. Such systems are likely to possess similar charge transfer (CT)-type T1 and S1 states. Recent investigations have suggested that the intervention of other type-states, such as locally excited triplet state(s), is necessary for efficient reverse intersystem crossing (RISC). Here, we theoretically and experimentally demonstrate that our blue TADF material exhibits efficient RISC even between singlet CT and triplet CT states without any additional states. The key factor is dynamic flexibility of the torsion angle between the donor and acceptor, which enhances spin-orbit coupling even between the charge transfer-type T1 and S1 states, without sacrificing the small ΔEST. This results in excellent photoluminescence and electroluminescence performances in all the host materials we investigate, with sky-blue to deep-blue emissions. Among the hosts investigated, the deepest blue emission with CIE coordinates of (0.15, 0.16) and the highest EQEMAX of 23.9 % are achieved simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号