首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The interaction of CO with structurally well-defined PdAg/Pd(111) surface alloys was investigated by temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) to unravel and understand contributions from electronic strain, electronic ligand and geometric ensemble effects. TPD measurements indicate that CO adsorption is not possible on the Ag sites of the surface alloys (at 120 K) and that the CO binding strength on Pd sites decreases significantly with increasing Ag concentration. Comparison with previous scanning tunneling microscopy (STM) data on the distribution of Pd and Ag atoms in the surface alloy shows that this modification is mainly due to geometric ensemble effects, since Pd(3) ensembles, which are the preferred ensembles for CO adsorption on non-modified Pd(111), are no longer available on Ag-rich surfaces. Consequently, the preferred CO adsorption site changes with increasing Ag content from a Pd(3) trimer via a Pd(2) dimer to a Pd monomer, going along with a successive weakening of CO adsorption. Additionally, the CO adsorption properties of the surface alloys are also influenced by electronic ligand and strain effects, but on a lower scale. The results are discussed in comparison with previous findings on PdAg bulk alloys, supported PdAg catalysts and PdAu/Pd(111) model systems.  相似文献   

2.
The dissociative interaction of oxygen with structurally well‐defined monolayer PdxAg1?x/Pd(111) surface alloys of different compositions, with well‐known distributions of the respective surface atoms (A. K. Engstfeld et al., Phys. Chem. Chem. Phys. 2012 , 14, 10754–10761), and the coadsorption of/reaction with CO on oxygen pre‐covered surfaces were studied by high‐resolution electron energy loss spectroscopy (HREELS) and temperature‐programmed desorption/reaction spectroscopy (TPD/TPR). The impact of geometric ensemble effects as well as electronic ligand and strain effects on the adsorption and reaction behaviour of the respective species on the bimetallic surfaces is elucidated and compared with related systems such as CO adsorption on similar surfaces and oxygen adsorption on a Pd67Ag33(111) bulk alloy surface. The data show a clear dominance of ensemble effects on the oxygen adsorption and CO coadsorption behaviour, with oxygen adsorption limited to threefold‐hollow sites on Pd3 sites, while the combined electronic effects, as evident from modifications in the adsorption and reaction characteristics on the Pd sites, are small.  相似文献   

3.
Understanding the activation of CO2 on the surface of the heterogeneous catalysts comprised of metal/metal oxide interfaces is of critical importance since it is not only a prerequisite for converting CO2 to value-added chemicals but also often, a rate-limiting step. In this context, our current work focuses on the interaction of CO2 with heterogeneous bi-component model catalysts consisting of small MnOx clusters supported on the Pd(111) single crystal surface. These metal oxide-on-metal ‘reverse’ model catalyst architectures were investigated via temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) techniques under ultra-high vacuum (UHV) conditions. Enhancement of CO2 activation was observed upon decreasing the size of MnOx nanoclusters by lowering the preparation temperature of the catalyst down to 85 K. Neither pristine Pd(111) single crystal surface nor thick (multilayer) MnOx overlayers on Pd(111) were not capable of activating CO2, while CO2 activation was detected at sub-monolayer (∼0.7 ML) MnOx coverages on Pd(111), in correlation with the interfacial character of the active sites, involving both MnOx and adjacent Pd atoms.  相似文献   

4.
The adsorption of methanol on flat Au (100) surface with different coverages (θ = 1.0, 0.5 and 0.25 monolayer (ML)) is studied using density functional theory. Among the three sites (top, bridge and hollow) and coverages investigated in the present work, no adsorption is stable for θ = 1.0 ML. The most energetically preferred site of adsorption for CH3OH is found to be the hollow site for coverages of 0.25 ML and 0.50 ML. We also find that for all adsorption sites, an increase in CH3OH coverage triggers a decrease in the adsorption energy. The geometric parameters, local density of states and work function changes are analysed in detail. The coadsorption of methoxy and hydrogen has also investigated. In addition, the dissociation of methanol on Au(100) has been studied, and an activation energy was found to be 1.72 eV. This result compare with existing data in the literature for Au(111) surface. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Single-atom M−N2 (M=Fe, Co, Ni) catalysts exhibit high activity for CO2 reduction reaction (CO2RR). However, the CO2RR mechanism and the origin of activity at the single-atom sites remain unclear, which hinders the development of single-atom M−N2 catalysts. Here, using density functional theory calculations, we reveal intermediates-induced CO2RR activity at the single-atom M−N2 sites. At the M−N2 sites, the asymmetric *O*CO configuration tends to split into *CO and *OH intermediates. Intermediates become part of the active moiety to form M−(CO)N2 or M-(OH)N2 sites, which optimizes the adsorption of intermediates on the M sites. The maximum free energy differences along the optimal CO2RR pathway are 0.30, 0.54, and 0.28 eV for Fe−(OH)N2, Co−(CO)N2, and Ni−(OH)N2 sites respectively, which is lower than those of Fe−N2 (1.03 eV), Co−N2 (1.24 eV) and Ni−N2 (0.73 eV) sites. The intermediate modification can shift the d-band center of the spin-up (minority) state downward by regulating the charge distribution at the M sites, leading to less charge being accepted by the intermediates from the M sites. This work provides new insights into the understanding of the activity of single-atom M−N2 sites.  相似文献   

6.
用密度泛函理论研究了氢和硫原子在金属Pd、Au、Cu以及合金PdM3、Pd2M2 和Pd3M(111)表面的吸附(M=Au, Cu), 得到了覆盖率为0.25时最稳定的吸附位、结合能以及吸附前后表面的驰豫情况. 结果表明, 氢和硫均与Pd形成最稳定的吸附, Cu次之, Au的吸附最弱, 其在三种纯金属(111)表面的最稳定吸附位均为fcc位. 由于PdAu合金具有较大的晶格常数, Pd3Au 合金吸附氢的结合能甚至较纯Pd更大, 除此之外, 氢和硫在PdM合金表面的吸附基本随M组分的增加而减弱, 而最稳定的吸附位随金属种类和组成变化而变化. 根据计算得到的吸附结合能, 发现与PdCu合金相比, PdAu合金在Au含量较低(约25%, 摩尔分数)时, 氢和硫吸附的结合能下降较慢, 而Au含量较高(跃50%)时, 结合能迅速下降, 这表明含金量为25%-50%的PdAu合金有可能在保持相近透氢性能的同时, 比PdCu合金具有更好的抗硫毒性.  相似文献   

7.
Catalytic groundwater remediation from chlorinated organic solvents like trichloroethene (TCE) has been found to be more effective and sustainable than traditional non-destructive methods. Among the experimentally studied catalyst materials, Pd-decorated Au nanoparticles show the highest activity and selectivity combined with the best resistance towards poisoning by chemicals present in groundwater. In this study the thermochemistry and adsorption geometries of TCE and its hydrodechlorination products are investigated via density functional theory calculations. Various model systems for Pd-supported Au nanoparticles are addressed. The adsorption of TCE is endothermic on bare Au(111), almost thermoneutral or slightly exothermic on Pd-Au surface alloys and clearly exothermic on Pd overlayer structures on Au(111). The strongest chemisorption is on the di-σ configuration between Pd atoms over the smallest 2D Pd clusters containing only a few Pd atoms. These are not, however, the best catalysts as they are too small to co-adsorb hydrogen needed for hydrodechlorination reaction. We demonstrate good correlation between adsorption energies and the d-band center of the system. The variation of adsorption energy from the one Pd-Au composition to the other can be tentatively assigned to be due to the ligand and coordination effects. Also, the ensemble effects are important; without the right ensemble the adsorption is weak or endothermic.  相似文献   

8.
Electrosorption of hydrogen into palladium-gold alloys   总被引:1,自引:0,他引:1  
Hydrogen electrosorption into Pd-Au alloys has been studied in acidic solutions (1 M H2SO4) using cyclic voltammetry. Pd-Au electrodes with limited volume were prepared by electrochemical co-deposition. It was found that the maximum H/(Pd+Au) ratios decrease monotonically with increasing gold content and reach zero at ca. 70 at% Au. Similarly to the case of Pd limited volume electrodes, two peaks in the hydrogen region, corresponding to two types of sorbed hydrogen, are observed on voltammograms for Pd-rich alloys. The hydrogen capacity, H/(Pd+Au), measured electrochemically, depends on the sweep rate in the cyclic voltammetry experiments, which suggests that two different mechanisms for hydrogen desorption from the Pd-Au alloy are possible. After a strong decrease of Pd concentration at the electrode surface, caused by long cyclic polarization to sufficiently anodic potentials, the amount of absorbed hydrogen is still significant for alloys initially rich in Pd. The results obtained from CO adsorption experiments suggest that only Pd atoms are active in the hydrogen absorption/desorption process. Electronic Publication  相似文献   

9.
We report a straightforward strategy to design efficient N doped porous carbon (NPC) electrocatalyst that has a high concentration of easily accessible active sites for the CO2 reduction reaction (CO2RR). The NPC with large amounts of active N (pyridinic and graphitic N) and highly porous structure is prepared by using an oxygen-rich metal–organic framework (Zn-MOF-74) precursor. The amount of active N species can be tuned by optimizing the calcination temperature and time. Owing to the large pore sizes, the active sites are well exposed to electrolyte for CO2RR. The NPC exhibits superior CO2RR activity with a small onset potential of −0.35 V and a high faradaic efficiency (FE) of 98.4 % towards CO at −0.55 V vs. RHE, one of the highest values among NPC-based CO2RR electrocatalysts. This work advances an effective and facile way towards highly active and cost-effective alternatives to noble-metal CO2RR electrocatalysts for practical applications.  相似文献   

10.
Hydrogen adsorption on and absorption into Pd alloys with other noble metals was studied in acidic solutions (0.5 M H2SO4) using cyclic voltammetry. Correlations were found between the potentials of adsorbed/absorbed hydrogen oxidation peaks and surface/bulk compositions of Pd–Rh alloys. The potential of the α–β-phase transition depends linearly on Pd bulk content in Pd–Au, Pd–Rh, Pd–Pt and Pd–Pt–Rh alloys. The obtained relationships can be utilized for the determination of the composition of homogeneous Pd-noble alloys from hydrogen electrosorption experiments.  相似文献   

11.
Oxide-derived Cu (OD−Cu) featured with surface located sub-20 nm nanoparticles (NPs) created via surface structure reconstruction was developed for electrochemical CO2 reduction (ECO2RR). With surface adsorbed hydroxyls (OHad) identified during ECO2RR, it is realized that OHad, sterically confined and adsorbed at OD−Cu by surface located sub-20 nm NPs, should be determinative to the multi-carbon (C2) product selectivity. In situ spectral investigations and theoretical calculations reveal that OHad favors the adsorption of low-frequency *CO with weak C≡O bonds and strengthens the *CO binding at OD−Cu surface, promoting *CO dimerization and then selective C2 production. However, excessive OHad would inhibit selective C2 production by occupying active sites and facilitating competitive H2 evolution. In a flow cell, stable C2 production with high selectivity of ∼60 % at −200 mA cm−2 could be achieved over OD−Cu, with adsorption of OHad well steered in the fast flowing electrolyte.  相似文献   

12.
13.
The effect of alloying on the adsorption of atomic hydrogen was studied using density functional theory (DFT). In the study the (100) surfaces of Pd-Ag, Pd-Pt, Pd-Au, Pt-Ag, and Pt-Au alloys were considered by means of a cluster model. The structural and energetic properties of the H atom adsorbed on the Pd4Me (Me = Ag, Pt, Au) and Pt4Me (Me = Pd, Ag, Au) clusters were calculated and compared with the H-atom adsorption on monometallic clusters. The effect of alloying on the H-atom adsorption is evident for all the investigated bimetallic systems. However, it strongly depends on the second metal atom, Me, is placed in the surface layer or in the subsurface one. In general, the H atom adsorbed in a site containing the second metal exhibits different properties from those characteristic of its adsorption on Pd(100) and Pt(100). Hence, the modified interaction between atomic hydrogen and the alloyed surfaces may increase the selectivity of the catalytic hydrogenation reactions on such surfaces.  相似文献   

14.
Pd–Rh alloys were prepared by electrochemical codeposition. Bulk compositions of the alloys were determined by the energy dispersive X-ray analysis method, while surface compositions were determined from the potential of the surface oxide reduction peak. Cyclic voltammograms, recorded in 0.5 M H2SO4 for Pd–Rh alloys of different bulk and surface compositions, are intermediate between curves characteristic of Pd and Rh. The influence of potential cycling on electrochemical properties and surface morphologies of the alloys was studied. Due to electrochemical dissolution of metals, both alloy surface and bulk become enriched with Pd. Carbon oxides were adsorbed at a constant potential from the range of hydrogen adsorption. The presence of adsorbed CO2 causes remarkable diminution of hydrogen adsorption but it does not significantly influence hydrogen insertion into the alloy bulk. On the other hand, in the presence of adsorbed CO, both hydrogen absorption and adsorption are strongly suppressed. Oxidative removal of the adsorbates results in a characteristic voltammetric peak, whose potential increases with the decrease in Rh surface content. Electron per site (eps) values calculated for the oxidation of the adsorbates change with alloy surface composition, more for CO2 than CO adsorption, indicating the variation of the structure and composition of CO2 and CO adsorption products. The course of the dependence of eps values on surface composition suggests that the products of CO2 and CO adsorption on Pd–Rh alloys are similar but not totally identical.  相似文献   

15.
One-unit-cell, single-crystal, hexagonal CuInP2S6 atomically thin sheets of≈0.81 nm in thickness was successfully synthesized for photocatalytic reduction of CO2. Exciting ethene (C2H4) as the main product was dominantly generated with the yield-based selectivity reaching ≈56.4 %, and the electron-based selectivity as high as ≈74.6 %. The tandem synergistic effect of charge-enriched Cu−In dual sites confined on the lateral edge of the CuInP2S6 monolayer (ML) is mainly responsible for efficient conversion and high selectivity of the C2H4 product as the basal surface site of the ML, exposing S atoms, can not derive the CO2 photoreduction due to the high energy barrier for the proton-coupled electron transfer of CO2 into *COOH. The marginal In site of the ML preeminently targets CO2 conversion to *CO under light illumination, and the *CO then migrates to the neighbor Cu sites for the subsequent C−C coupling reaction into C2H4 with thermodynamic and kinetic feasibility. Moreover, ultrathin structure of the ML also allows to shorten the transfer distance of charge carriers from the interior onto the surface, thus inhibiting electron-hole recombination and enabling more electrons to survive and accumulate on the exposed active sites for CO2 reduction.  相似文献   

16.
针对CO2热催化转化制甲醇过程中CO2吸附、活化较困难及副产物较多的问题,提出采用单原子Ge助剂修饰Cu(111)晶面的解决思路,通过密度泛函理论(DFT)计算研究了CO2在Ge-Cu(111)晶面上加氢合成甲醇的反应机理。结果表明,单原子Ge助剂的电子调控增加了与其相邻的 Cu 原子的电子云密度,使 CO2分子在含 Ge 活性界面上的吸附能力显著增强:CO2在 Ge-Cu(111)晶面上的吸附能约为Cu(111)晶面的1.5倍,约为Pd改性Cu(111)晶面的2.4倍,进而使逆水煤气变换(RWGS)反应路径速控步骤的活化能降低了近 20 kJ·mol-1,同时衍生出 3条生成甲醇的 RWGS新路径;此外,Ge-Cu(111)晶面上甲酸盐路径由于速控步骤活化能大幅上升而被禁阻,进而CO及烃类等副产物选择性大幅降低,Ge-Cu(111)晶面上CO2加氢制甲醇选择性升高。  相似文献   

17.
Adsorption and reaction of CO and CO2 were studied on oxygen-covered Au(997) surfaces by means of temperatureprogrammed desorption/reaction spectroscopy. Oxygen atoms (O(a)) on Au(997) enhances the CO2 adsorption and stabilizes the adsorbed CO2(a), and the stabilization effect also depends on the CO2(a) coverage and involved Au sites. CO2(a) desorption is the rate-limiting step for the CO+O(a) reaction to produce CO2 on Au(997) at 105 K and exhibits complex behaviors, including the desorption of CO2(a) upon CO exposures at 105 K and the desorption of O(a)-stabilized CO2(a) at elevated temperatures. The desorption of CO2(a) from the surface upon CO exposures at 105 K to produce gaseous CO2 depends on the surface reaction extent and involves the reaction heat-driven CO2(a) desorption channel. CO+O(a) reaction proceeds more easily with weakly-bound oxygen adatoms at the (111) terraces than strongly-bound oxygen adatoms at the (111) steps. These results reveal complex rate-limiting CO2(a) desorption behaviors during CO+O(a) reaction on Au surfaces at low temperatures which provide novel information on the fundamental understanding of Au catalysis.  相似文献   

18.
《化学:亚洲杂志》2018,13(19):2800-2804
Here we report a partially oxidized palladium nanodot (Pd/PdOx) catalyst with a diameter of around 4.5 nm. In aqueous CO2‐saturated 0.5 m KHCO3, the catalyst displays a Faradaic efficiency (FE) of 90 % at −0.55 V vs. reversible hydrogen electrode (RHE) for carbon monoxide (CO) production, and the activity can be retained for at least 24 h. The improved catalytic activity can be attributed to the strong adsorption of CO2.− intermediate on the Pd/PdOx electrode, wherein the presence of Pd2+ during the electroreduction reaction of CO2 may play an important role in accelerating the carbon dioxide reduction reaction (CO2RR). This study explores the catalytic mechanism of a partially oxidized nanostructured Pd electrocatalyst and provides new opportunities for improving the CO2RR performance of metal systems.  相似文献   

19.
针对CO2热催化转化制甲醇过程中CO2吸附、活化较困难及副产物较多的问题,提出采用单原子Ge助剂修饰Cu (111)晶面的解决思路,通过密度泛函理论(DFT)计算研究了CO2在Ge-Cu(111)晶面上加氢合成甲醇的反应机理。结果表明,单原子Ge助剂的电子调控增加了与其相邻的Cu原子的电子云密度,使CO2分子在含Ge活性界面上的吸附能力显著增强:CO2在Ge-Cu(111)晶面上的吸附能约为Cu (111)晶面的1.5倍,约为Pd改性Cu(111)晶面的2.4倍,进而使逆水煤气变换(RWGS)反应路径速控步骤的活化能降低了近20 kJ·mol-1,同时衍生出3条生成甲醇的RWGS新路径;此外,Ge-Cu(111)晶面上甲酸盐路径由于速控步骤活化能大幅上升而被禁阻,进而CO及烃类等副产物选择性大幅降低,Ge-Cu(111)晶面上CO2加氢制甲醇选择性升高。  相似文献   

20.
A surface reconstructing phenomenon is discovered on a defect-rich ultrathin Pd nanosheet catalyst for aqueous CO2 electroreduction. The pristine nanosheets with dominant (111) facet sites are transformed into crumpled sheet-like structures prevalent in electrocatalytically active (100) sites. The reconstruction increases the density of active sites and reduces the CO binding strength on Pd surfaces, remarkably promoting the CO2 reduction to CO. A high CO Faradaic efficiency of 93 % is achieved with a site-specific activity of 6.6 mA cm−2 at a moderate overpotential of 590 mV on the reconstructed 50 nm Pd nanosheets. Experimental and theoretical studies suggest the CO intermediate as a key factor driving the structural transformation during CO2 reduction. This study highlights the dynamic nature of defective metal nanosheets under reaction conditions and suggests new opportunities in surface engineering of 2D metal nanostructures to tune their electrocatalytic performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号