首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multicomponent supramolecular hydrogels are promising scaffolds for applications in biosensors and controlled drug release due to their designer stimulus responsiveness. To achieve rational construction of multicomponent supramolecular hydrogel systems, their in-depth structural analysis is essential but still challenging. Confocal laser scanning microscopy (CLSM) has emerged as a powerful tool for structural analysis of multicomponent supramolecular hydrogels. CLSM imaging enables real-time observation of the hydrogels without the need of drying and/or freezing to elucidate their static and dynamic properties. Through multiple, selective fluorescent staining of materials of interest, multiple domains formed in supramolecular hydrogels (e. g. inorganic materials and self-sorting nanofibers) can also be visualized. CLSM and the related microscopic techniques will be indispensable to investigate complex life-inspired supramolecular chemical systems.  相似文献   

2.
For the first time the combination of self-immolative spacers and supramolecular hydrogels has been tested in enzyme triggered drug release. Low-molecular weight drug-gelator conjugates have been prepared, which contain a gel forming lysine moiety linked to model drugs (benzylamine and phenethylamine) through a self-immolating spacer (p-aminobenzyloxycarbonyl). In the presence of trypsin the amide linkage between the gelator moiety and the spacer is hydrolyzed leading to the release of the model drug. This approach provides with distinct advantages, such as sustained release or versatility associated to the use of supramolecular hydrogels and self-immolative spacers, respectively.  相似文献   

3.
Hydrogel biomaterials are pervasive in biomedical use. Applications of these soft materials range from contact lenses to drug depots to scaffolds for transplanted cells. A subset of hydrogels is prepared from physical cross‐linking mediated by host–guest interactions. Host macrocycles, the most recognizable supramolecular motif, facilitate complex formation with an array of guests by inclusion in their portal. Commonly, an appended macrocycle forms a complex with appended guests on another polymer chain. The formation of poly(pseudo)rotaxanes is also demonstrated, wherein macrocycles are threaded by a polymer chain to give rise to physical cross‐linking by secondary non‐covalent interactions or polymer jamming. Host–guest supramolecular hydrogels lend themselves to a variety of applications resulting from their dynamic properties that arise from non‐covalent supramolecular interactions, as well as engineered responsiveness to external stimuli. These are thus an exciting new class of materials.  相似文献   

4.
The supramolecular crosslinking of polymer chains in water by specific, directional and dynamic non-covalent interactions has led to the development of novel supramolecular polymeric hydrogels. These aqueous polymeric networks constitute an interesting class of soft materials exhibiting attractive properties such as stimuli-responsiveness and self-healing arising from their dynamic behaviour and that are crucial for a wide variety of emerging applications. We present here a critical review summarising the formation of dynamic polymeric networks through specific non-covalent interactions, with a particular emphasis on those systems based on host-guest complex formation, as well as the characterisation of their physical characteristics. Aqueous supramolecular chemistry has unlocked a versatile toolbox for the design and fine-tuning of the material properties of these hydrogels (264 references).  相似文献   

5.
As a consequence of the self‐assembly of small organic molecules in water, supramolecular hydrogels are evolving from serendipitous events during organic synthesis to become a new type of materials that hold promise for applications in biomedicine. In this Focus Review, we describe recent advances in the use of basic biological building blocks for creating molecules that act as hydrogelators and the potential applications of the corresponding hydrogels. After introducing the concept of supramolecular hydrogels and defining the scope of this review, we briefly describe the methods for making and characterizing supramolecular hydrogels. We then discuss representative hydrogelators according to the categories of their building blocks, such as amino acids, nucleobases, and saccharides, and highlight the applications of the hydrogels when necessary. Finally, we offer our perspective and outlook on this fast‐growing field at the interface of organic chemistry, materials, biology, and medicine. By providing a snapshot for chemists, engineers, and medical scientists, we hope that this Focus Review will contribute to the development of multidisciplinary research on supramolecular hydrogels for a wide range of applications in different fields.  相似文献   

6.
Self‐healing supramolecular hydrogels have emerged as a novel class of biomaterials that combine hydrogels with supramolecular chemistry to develop highly functional biomaterials with advantages including native tissue mimicry, biocompatibility, and injectability. These properties are endowed by the reversibly cross‐linked polymer network of the hydrogel. These hydrogels have great potential for realizing yet to be clinically translated tissue engineering therapies. This review presents methods of self‐healing supramolecular hydrogel formation and their uses in tissue engineering as well as future perspectives.  相似文献   

7.
Cyclodextrin‐based controlled delivery materials have previously been developed for controlled release of different therapeutic drugs. In this study, a supramolecular hydrogel made from cyclodextrin‐based macromonomers is subjected to molecular imprinting to investigate the impact on release kinetics and drug loading, when compared with non‐imprinted, or alternately imprinted hydrogels. Mild synthesis conditions are used to molecularly imprint three antibiotics—novobiocin, rifampicin, and vancomycin—and to test two different hydrogel chemistries. The release profile and drug loading of the molecularly imprinted hydrogels are characterized using ultraviolet spectroscopy over a period of 35 days and compared to non‐imprinted, and alternately imprinted hydrogels. While only modest differences are observed in the release rate of the antibiotics tested, a substantial difference is observed in the total drug‐loading amount possible for hydrogels releasing drugs which has been templated by those drugs. Hydrogels releasing drugs which are templated by other drugs do not show improved release or loading. Analysis by FTIR does not show substantial incorporation of drug into the polymer. Lastly, bioactivity assays confirmed long‐term stability and release of incorporated antibiotics.  相似文献   

8.
Supramolecular polymers from the bolaamphiphilic L ‐histidine ( BolaHis ) and benzene dicarboxylic acids (o‐phthalic acid, OPA ; isophthalic acid, IPA and terephthalic acid, TPA ) were found to form hydrogels although neither of the single components could gel water. It was suggested that the hydrogen bond and ionic interactions among different imidazole and carboxylic acid groups are responsible for the formation of the supramolecular polymer as well as the hydrogel formation. Depending on the structures of the dicarboxylic acids, different behaviors of the gels were observed. The hydrogels from OPA / BolaHis and IPA / BolaHis showed thixotropic properties, that is, the hydrogel was destroyed by hand shaking and then slowly gelated again at room temperature. However, the hydrogels of TPA / BolaHis could not. Interestingly, when EuIII was doped into IPA / BolaHis supramolecular polymers, very strong luminescence enhancement was observed. FT‐IR spectroscopies and XRD analysis revealed that the strong luminescence enhancement could be attributed to the matched supramolecular nanostructures, which render the correct binding and a good dispersion of EuIII ions. The work offers a new approach for fabricating functional hydrogels through the supramolecular polymers.  相似文献   

9.
Enzyme‐responsive hydrogels have great potential in applications of controlled drug release, tissue engineering, etc. In this study, we reported on a supramolecular hydrogel that showed responses to two enzymes, phosphatase which was used to form the hydrogels and esterase which could trigger gel‐sol phase transitions. The gelation process and visco‐elasticity property of the resulting gel, morphology of the nanostructures in hydrogel, and peptide conformation in the self‐assembled nanostructure were characterized by rheology, transmission electron microscope (TEM), and circular dichroism (CD), respectively. Potential application of the enzyme‐responsive hydrogel in drug release was also demonstrated in this study. Though only one potential application of drug release was proved in this study, the responsive hydrogel system in this study might have potentials for the applications in fields of cell culture, controlled‐drug release, etc.  相似文献   

10.
Here we report on a new class of supramolecular hydrogels based on dipeptides that consist of beta-amino acids, which may confer proteolytic resistance to the hydrogels for biomedical applications.  相似文献   

11.
Injectable hydrogels have attracted a lot of attention in drug delivery, however, their capacity to deliver water-insoluble or hydrophobic anti-cancer drugs is limited. Here, we developed injectable graphene oxide/graphene composite supramolecular hydrogels to deliver anti-cancer drugs. Pluronic F-127 was used to stabilize graphene oxide (GO) and reduced graphene oxide (RGO) in solution, which was mixed with α-cyclodextrin (α-CD) solution to form hydrogels. Native hydrogel was used as control. GO or RGO slightly shortened gelation time. The storage and loss moduli of the hydrogels were tracked by dynamic force measurement. The storage modulus of GO or RGO composite hydrogels was larger than that of the native hydrogel. Hydrogels were unstable in solution and eroded gradually. GO or RGO in Pluronic F-127 solution could potentially improve the solubility of the water-insoluble anti-cancer drug camptothecin (CPT), especially with large drug-loaded CPT amount. Drug release behaviors from solutions and hydrogels were characterized. The nanocomponents (GO or RGO) were able to bind more drug molecules either for CPT or for doxorubicin hydrochloride (DXR) in solution. Therefore, GO or RGO composite hydrogel could potentially enable better controlled and gentler drug release (for both CPT and DXR) than native hydrogel.  相似文献   

12.
《中国化学快报》2021,32(11):3636-3640
Zwitterionic polymer materials have been extensively studied, but zwitterionic peptides supramolecular hydrogel materials are rarely studied. In this study, the preparation of two zwitterionic hydrogels using self-assembled peptides were reported. The hydrogels could be fabricated easily by changing the temperature or enzyme catalysis in a short time. And the differences in structure and function of the zwitterion peptide hydrogels caused by the two preparation methods were also be compared. We found that the hydrogel prepared by enzyme induced self-assembly has better solubility and lower cytotoxicity than that prepared by the heating-cooling process. The result showed the enzyme induced self-assembly way to form zwitterionic peptides supramolecular hydrogel materials could have further biomedical applications.  相似文献   

13.
《化学:亚洲杂志》2018,13(15):1962-1971
Recently, supramolecular hydrogels have attracted increasing interest owing to their tunable stability and inherent biocompatibility. However, only few studies have been reported in the literature on self‐healing supramolecular nucleoside hydrogels, compared to self‐healing polymer hydrogels. In this work, we successfully developed a self‐healing supramolecular nucleoside hydrogel obtained by simply mixing equimolar amounts of guanosine (G) and isoguanosine (isoG) in the presence of K+. The gelation properties have been studied systematically by comparing different alkali metal ions as well as mixtures with different ratios of G and isoG. To this end, rheological and phase diagram experiments demonstrated that the co‐gel not only possessed good self‐healing properties and short recovery time (only 20 seconds) but also could be formed at very low concentrations of K+. Furthermore, nuclear magnetic resonance (NMR), powder X‐ray diffraction (PXRD), and circular dichroism (CD) spectroscopy suggested that possible G2isoG2‐quartet structures occurred in this self‐healing supramolecular nucleoside hydrogel. This co‐gel, to some extent, addressed the problem of isoguanosine gels for the applications in vivo, which showed the potential to be a new type of drug delivery system for biomedical applications in the future.  相似文献   

14.
N-(Fluorenyl-9-Methoxycarbonyl) dipeptides form supramolecular hydrogels via hydrogen bonding and hydrophobic interactions. These hydrogels respond to a ligand-receptor interaction as well as to thermal or pH perturbation and also exhibit chiral recognition.  相似文献   

15.
《化学:亚洲杂志》2017,12(16):2029-2032
The development of an effective adsorbent for cleansing polluted water is required for environmental purification. In this respect, a supramolecular hydrogel constructed by the self‐assembly of small molecules could be a strong candidate. Adsorption experiments of organic dyes were performed using supramolecular hydrogels of amphiphilic tris‐urea 1 . Cationic organic dyes were adsorbed efficiently; indeed, the adsorption of methylene blue was as high as 4.19 mol equivalents relative to 1 . Two luminescence peaks were observed in the rhodamine 6G‐adsorbed supramolecular hydrogels, and their ratios varied with the amount of dye adsorbed. Fluorescence microscopy images of the supramolecular hydrogel at lower dye levels exhibited fibrous fluorescence consistent with the fibrous aggregates of 1 . According to these results, adsorption may proceed gradually, that is, occurring initially on the fibers and later in the aqueous spaces of the supramolecular hydrogel.  相似文献   

16.
Polyoxometalates (POMs) have attracted much attention in the field of photochromic materials. However, POM-based photochromic supramolecular hydrogels with high transparency and good photochromic properties are seldom reported. In this work, a homogenous, optically transparent, injectable, and photochromic supramolecular hydrogel was fabricated through the coassembly of ammonium heptamolybdate (Mo7) and an imidazolium-based zwitterionic amphiphile (3-(1-hexadecyl-3-imidazolio)propanesulfonate (C16IPS)). The balance between electrostatic attraction and repulsion of Mo7 clusters and zwitterionic amphiphiles enables them to coassemble into a homogenous and transparent supramolecular hydrogel. By adjusting the molar ratio of C16IPS/Mo7, ordered spherical micelle-based hydrogels and aligned wormlike micelle-based hydrogels can be obtained. The incorporation of Mo7 into hydrogels endows these hydrogels with excellent photochromic properties. Specifically, after coassembly with C16IPS, the photochromic ability of hydrogels is significantly enhanced compared with that of a pure aqueous solution of Mo7. These hydrogels exhibit great potential applications as photochromic materials for the recording of rewritable information.  相似文献   

17.
Hybrid nanocomposites were constructed based on colloidal nanofibrillar hydrogels with interpenetrating supramolecular hydrogels, displaying enhanced rheological yield strain and a synergistic improvement in storage modulus. The supramolecular hydrogel consists of naphthyl‐functionalized hydroxyethyl cellulose and a cationic polystyrene derivative decorated with methylviologen moieties, physically cross‐linked with cucurbit[8]uril macrocyclic hosts. Fast exchange kinetics within the supramolecular system are enabled by reversible cross‐linking through the binding of the naphthyl and viologen guests. The colloidal hydrogel consists of nanofibrillated cellulose that combines a mechanically strong nanofiber skeleton with a lateral fibrillar diameter of a few nanometers. The two networks interact through hydroxyethyl cellulose adsorption to the nanofibrillated cellulose surfaces. This work shows methods to bridge the length scales of molecular and colloidal hybrid hydrogels, resulting in synergy between reinforcement and dynamics.  相似文献   

18.
Recent advances in host–guest chemistry have significantly influenced the construction of supramolecular soft biomaterials. The highly selective and non‐covalent interactions provide vast possibilities of manipulating supramolecular self‐assemblies at the molecular level, allowing a rational design to control the sizes and morphologies of the resultant objects as carrier vehicles in a delivery system. In this Focus Review, the most recent developments of supramolecular self‐assemblies through host–guest inclusion, including nanoparticles, micelles, vesicles, hydrogels, and various stimuli‐responsive morphology transition materials are presented. These sophisticated materials with diverse functions, oriented towards therapeutic agent delivery, are further summarized into several active domains in the areas of drug delivery, gene delivery, co‐delivery and site‐specific targeting deliveries. Finally, the possible strategies for future design of multifunctional delivery carriers by combining host–guest chemistry with biological interface science are proposed.  相似文献   

19.
Maltose is a ubiquitous disaccharide produced by the hydrolysis of starch. Amphiphilic ureas bearing hydrophilic maltose moiety were synthesized via the following three steps: I) construction of urea derivatives by the condensation of 4-nitrophenyl isocyanate and alkylamines, II) reduction of the nitro group by hydrogenation, and III) an aminoglycosylation reaction of the amino group and the unprotected maltose. These amphiphilic ureas functioned as low molecular weight hydrogelators, and the mixtures of the amphipathic ureas and water formed supramolecular hydrogels. The gelation ability largely depended on the chain length of the alkyl group of the amphiphilic urea; amphipathic urea having a decyl group had the highest gelation ability (minimum gelation concentration=0.4 mM). The physical properties of the supramolecular hydrogels were evaluated by measuring their thermal stability and dynamic viscoelasticity. These supramolecular hydrogels underwent gel-to-sol phase transition upon the addition of α-glucosidase as a result of the α-glucosidase-catalyzed hydrolysis of the maltose moiety of the amphipathic urea.  相似文献   

20.
Nonionic hydrogels are of particular interest for long-term therapeutic implantation due to their minimal immunogenicity relative to their charged counterparts. However, in situ formation of nonionic supramolecular hydrogels under physiological conditions has been a challenging task. In this context, we report on our discovery of salt-triggered hydrogelation of nonionic supramolecular polymers (SPs) formed by self-assembling prodrug hydrogelators (SAPHs) through the Hofmeister effect. The designed SAPHs consist of two SN-38 units, which is an active metabolite of the anticancer drug irinotecan, and a short peptide grafted with two or four oligoethylene glycol (OEG) segments. Upon self-assembly in water, the resultant nonionic SPs can be triggered to gel upon addition of phosphate salts. Our 1H NMR studies revealed that the added phosphates led to a change in the chemical shift of the methylene protons, suggestive of a disruption of the water-ether hydrogen bonds and consequent reorganization of the hydration shell surrounding the SPs. This deshielding effect, commensurate with the amount of salt added, likely promoted associative interactions among the SAPH filaments to percolate into a 3D network. The formed hydrogels exhibited a sustained release profile of SN-38 hydrogelator that acted potently against cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号