首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pulsed Corona Discharge-Induced Reactions of Acetophenone in Water   总被引:2,自引:0,他引:2  
The reactions of acetophenone in water by pulsed corona discharges have been investigated to provide fundamental information concerning the reactions of acetophenone in water. Experimental results indicated that photolysis of acetophenone did not involve a hydroxyl radical mechanism and the majority flux of hydroxyl radicals originated from the dissociation of gas-phase oxygen in the plasma channels. The rate constants for photolysis and pyrolysis were determined to be 1.5×10–7 M-s–1, 2.2×10–4 s–1, respectively. The rate constant for the oxidative reactions was measured as 1.2×10–7 M-s–1. Results from this study support the proposal that acetophenone degradation reaction proceed through the oxidative reaction pathway, where molecular oxygen accelerates acetophenone degradation, photolysis, and pyrolysis pathways.  相似文献   

2.
Degradation of Acetophenone in Water by Pulsed Corona Discharges   总被引:2,自引:0,他引:2  
Degradation of acetophenone in dilute aqueous solution has been studied using pulsed corona discharges in water. Higher conversions of acetophenone were obtained with the addition of oxygen or ozone than with the addition of nitrogen and without the addition of any gas. Intermediates of acetophenone degradation, as determined by gas chromatography–mass spectroscopies (GC–MS), were phenethyl alcohol, toluene, and 2-acetylphenol. In addition, the degradation reaction pathways of acetophenone in water are discussed.  相似文献   

3.
Pulsed corona discharges have been utilized for plasma polymerization in aqueous solution for the first time. Superabsorbent copolymers, i.e., poly(acrylamide-co-acrylic acid) hydrogels, were synthesized by aqueous solution polymerization using free radicals produced by pulsed corona discharges as initiator and N,N-methylene-bis-acrylamide as cross-linking agent. Acrylic acid contents in the monomers varied from 0% to 50%. The copolymers thus formed adsorbed 30–1100 g H2O/g of copolymer. The FTIR spectra of the copolymers are comparable with the published FTIR spectra of the corresponding copolymers synthesized by a conventional chemical method and by -ray technique.  相似文献   

4.
Degradation of aqueous 250 mg/L 4-chlorophenol (4-CP) by high-voltage pulse corona discharges combined with ozone was investigated to gain insight into factors affecting enhancement of the combined system. High-voltage pulse corona discharges, ozonation, and a combination of the two were used to facilitate the degradation of aqueous 4-CP. Experimental results indicate that the treatment of 4-CP using a combination of high-voltage pulse corona discharges and ozonation within 30 min resulted in the almost degradation (96%) and a 51% reduction of the chemical oxygen demand (COD). This apparent synergistic effect may be attributed to the enhancement of ozone decomposition. The degradation of aqueous 4-CP by high-voltage pulse corona discharges combined with ozone was found to be affected by ozone concentration, substrate concentration, and interelectrode separations. The increase of ozone concentration leads to an increase of 4-CP conversion and COD removal. The conversion of 4-CP decreased with increase in 4-CP concentration and interelectrode separations.  相似文献   

5.
Carbon black (CB) without micropores was functionalized by mixed acid and used to explore the surface chemistry effect on the production of hydrogen peroxide (H2O2). The CB materials were characterized by N2 adsorption‐desorption, XRD, SEM, FTIR, and TPD. The results of different characterization methods indicated that both the textural features and the surface chemical properties of CB were significantly modified by the acidic treatment. The catalytic performance of the modified CBs for hydroxylamine (NH2OH) oxidation increased with increasing the surface oxygen‐containing species. The yield of H2O2 approached 30% with the corresponding concentration of 73.9 mmol·L?1 (w=0.25%) over the most promising CB catalyst, which was much superior to the results obtained on supported noble metals. Correlations between catalytic activity and concentration of different surface functional groups on the CB samples confirmed that the quinonoid species might be the active species.  相似文献   

6.
王金格  周伟  李佳轶  丁雅妮  高继慧 《化学学报》2022,80(11):1555-1568
基于电催化的能源转化、化学品合成及污染物降解技术是解决能源与环境问题的重要方式. 一些研究已经证明, 通过简单地施加周期性切换电位的脉冲供电策略, 将会有效提升电催化性能. 本文对脉冲供电策略在电化学高级氧化、电化学二氧化碳还原、有机电合成、电解水制氢等经典电化学体系中的应用及研究进展进行了综述, 并具体分析了其对各类电催化反应性能的强化机制, 这些机制主要包括: 通过周期性更新能斯特扩散层的物质浓度以增强催化活性; 通过动态调控中间体吸附能以提高催化选择性; 通过维持催化剂表面处于非平衡状态, 避免催化剂失活以提高催化剂的稳定性. 最后, 本文展望了脉冲电催化未来所面临的机遇与挑战.  相似文献   

7.
8.
Recent studies on water‐splitting photoelectrochemical cells (PECs) have demonstrated the intriguing possibility of controlling the spin state in this chemical reaction to form H2 and O2 by exploiting the chirality of organic π‐conjugated supramolecular polymers. Although this fascinating phenomenon has been disclosed, the chiral supramolecular materials reported thus far are not optimized for acting as efficient photosensitizer for dye‐sensitized PECs. In this work we report on the design, synthesis, and characterization of chiral supramolecular aggregates based on C3‐symmetric triphenylamine‐based dyes that are able to both absorb visible light and control the spin state of the process. Variable temperature‐dependent spectroscopic measurements reveal the assembly process of the dyes and confirm the formation of chiral aggregates, both in solution as well as on solid supports. Photoelectrochemical measurements on TiO2‐based anodes validate the advantage of using chiral supramolecular aggregates as photosensitizer displaying higher photocurrent compared to achiral analogues. Moreover, fluorimetric tests for the quantification of the hydrogen peroxide produced, confirm the possibility of controlling the spin of the reaction exerting spin‐selection with chiral supramolecular polymers. These results represent a further step towards the next‐generation of organic‐based water‐splitting solar cells.  相似文献   

9.
The early stages of the Coulomb explosion of a doubly ionized water molecule immersed in liquid water are investigated with time‐dependent density functional theory molecular dynamics (TD–DFT MD) simulations. Our aim is to verify that the double ionization of one target water molecule leads to the formation of atomic oxygen as a direct consequence of the Coulomb explosion of the molecule. To that end, we used TD–DFT MD simulations in which effective molecular orbitals are propagated in time. These molecular orbitals are constructed as a unitary transformation of maximally localized Wannier orbitals, and the ionization process was obtained by removing two electrons from the molecular orbitals with symmetry 1B1, 3A1, 1B2 and 2A1 in turn. We show that the doubly charged H2O2+ molecule explodes into its three atomic fragments in less than 4 fs, which leads to the formation of one isolated oxygen atom whatever the ionized molecular orbital. This process is followed by the ultrafast transfer of an electron to the ionized molecule in the first femtosecond. A faster dissociation pattern can be observed when the electrons are removed from the molecular orbitals of the innermost shell. A Bader analysis of the charges carried by the molecules during the dissociation trajectories is also reported.  相似文献   

10.
A rapid and efficient ultrasound-promoted protocol for iodination of aromatic and heteroaromatic compounds, using molecular iodine in the presence of aqueous hydrogen peroxide in water without any cosolvent, has produced versatile iodinated organic molecules with potential application in organic synthesis and medicine in short reaction times and good to excellent yields.  相似文献   

11.
Along with rapid social development, the use of insecticides and caffeine-containing products increases, a trend that is also reflected in the composition of surface waters. This study is focused on the phototreatment of a surface water containing three neonicotinoids (imidacloprid, thiamethoxam, and clothianidin) and caffeine. Firstly, the radiation absorption of the target pollutants and the effect of the water matrix components were evaluated. It was observed that the maximum absorption peaks appear at wavelengths ranging from 246 to 274 nm, and that the water matrix did not affect the efficiency of the removal of the target pollutants. It was found that the insecticides were efficiently removed after a very short exposure to UV irradiation, while the addition of hydrogen peroxide was needed for an efficient caffeine depletion. The electrical energy per order was estimated, being the lowest energy required (9.5 kWh m−3 order−1) for the depletion of thiamethoxan by indirect photolysis, and a concentration of hydrogen peroxide of 5 mg dm−3. Finally, a preliminary evaluation on the formation of by-products reveals that these compounds play a key role in the evolution of the ecotoxicity of the samples, and that the application of direct photolysis reduces the concentration of these intermediates.  相似文献   

12.
Similarities and differences : Far‐infrared spectra of protic ionic liquids could be assigned to intermolecular bending and stretching modes of hydrogen bonds. The characteristics of the low‐frequency spectra resemble those of water. Both liquids form three‐dimensional network structures, but only water is capable of building tetrahedral configurations. EAN: ethylammonium nitrate, PAN: propylammonium nitrate, DMAN: dimethylammonium nitrate.

  相似文献   


13.
A near‐IR spectral study on pure water and aqueous salt solutions is used to investigate stoichiometric concentrations of different types of hydrogen‐bonded water species in liquid water and in water comprising the hydration shell of salts. Analysis of the thermodynamics of hydrogen‐bond formation signifies that hydrogen‐bond making and breaking processes are dominated by enthalpy with non‐negligible heat capacity effects, as revealed by the temperature dependence of standard molar enthalpies of hydrogen‐bond formation and from analysis of the linear enthalpy–entropy compensation effects. A generalized method is proposed for the simultaneous calculation of the spectrum of water in the hydration shell and hydration number of solutes. Resolved spectra of water in the hydration shell of different salts clearly differentiate hydrogen bonding of water in the hydration shell around cations and anions. A comparison of resolved liquid water spectra and resolved hydration‐shell spectra of ions highlights that the ordering of absorption frequencies of different kinds of hydrogen‐bonded water species is also preserved in the bound state with significant changes in band position, band width, and band intensity because of the polarization of water molecules in the vicinity of ions.  相似文献   

14.
Formations of active species and by-products are different from bubbling different gases in a pulsed high-voltage discharge reactor. The identification of all the products and the formation rate determination of active species are quite important as the process is applied to wastewater disposal. Serials of measurements were conducted to do the identifications and determinations in this paper. Amounts of · OH all increased but that of H2O2 all decreased by bubbling gas. The · OH formation rate was 3.49 × 10−7, 3.56 × 10−7, 3.21 × 10−7 and 1.94 × 10−7 mol l−1 s−1 with bubbling nitrogen, argon, air and oxygen respectively, but it was 1.61 × 10−7 mol s−1 l−1 without bubbling. Without any bubbling, the H2O2 formation rate was up to 6.53 × 10−6 mol l−1 s−1, while it was 9.97 × 10−7, 1.663 × 10−7, 1.73 × 10−6 and 3.14 × 10−6 mol l−1 s−1 with bubbling nitrogen, argon, air and oxygen, respectively. NO2 and NO3 was detected in discharged water with bubbling nitrogenous gas. Their formation made the pH decreased.  相似文献   

15.
Detailed mechanisms for the formation of hydroxyl or alkoxyl radicals in the reactions between tetrachloro‐p‐benzoquinone (TCBQ) and organic hydroperoxides are crucial for better understanding the potential carcinogenicity of polyhalogenated quinones. Herein, the mechanism of the reaction between TCBQ and H2O2 has been systematically investigated at the B3LYP/6‐311++G** level of theory in the presence of different numbers of water molecules. We report that the whole reaction can easily take place with the assistance of explicit water molecules. Namely, an initial intermediate is formed first. After that, a nucleophilic attack of H2O2 onto TCBQ occurs, which results in the formation of a second intermediate that contains an OOH group. Subsequently, this second intermediate decomposes homolytically through cleavage of the O? O bond to produce a hydroxyl radical. Energy analyses suggest that the nucleophilic attack is the rate‐determining step in the whole reaction. The participation of explicit water molecules promotes the reaction significantly, which can be used to explain the experimental phenomena. In addition, the effects of F, Br, and CH3 substituents on this reaction have also been studied.  相似文献   

16.
可再生能源与电解水制氢技术的结合是实现可持续制氢的最佳途径. 然而,传统电解水技术中解决氢-氧同时、同步、同地产生的问题必须依赖于膜分离技术,大幅限制了氢-氧分离和氢气异地运输的灵活性,并阻碍了可再生能源(如风能、太阳能)与电解水技术的直接结合. 针对上述问题,作者课题组在近期提出了基于电池电极反应的分步法电解水制氢技术,即通过电池电极的可逆电化学反应将现有电解水过程拆分为制氢和制氧分立步骤,实现在无膜条件下氢气和氧气的分时、分地交替制备,提升了电解水制氢的灵活性,促进了可再生能源向氢能的直接转化. 本文将介绍这一新技术的研究进展,并分析这一技术的优点和面临的挑战.  相似文献   

17.
The behavior of water entrapped in reverse micelles (RMs) formed by two catanionic ionic liquid‐like surfactants, benzyl‐n‐hexadecyldimethylammonium 1,4‐bis‐2‐ethylhexylsulfosuccinate (AOT‐BHD) and cetyltrimethylammonium 1,4‐bis‐2‐ethylhexylsulfosuccinate (AOT‐CTA), was investigated by using dynamic (DLS) and static (SLS) light scattering, FTIR, and 1H NMR spectroscopy techniques. To the best of our knowledge, this is the first report in which AOT‐CTA has been used to create RMs and encapsulate water. DLS and SLS results revealed the formation of RMs in benzene and the interaction of water with the RM interface. From FTIR and 1H NMR spectroscopy data, a difference in the magnitude of the water–catanionic surfactant interaction at the interface is observed. For the AOT‐BHD RMs, a strong water–surfactant interaction can be invoked whereas for AOT‐CTA this interaction seems to be weaker. Consequently, more water molecules interact with the interface in AOT‐BHD RMs with a completely disrupted hydrogen‐bond network, than in AOT‐CTA RMs in which the water structure is partially preserved. We suggest that the benzyl group present in the BHD+ moiety in AOT‐BHD is responsible for the behavior of the catanionic interface in comparison with the interface created in AOT‐CTA. These results show that a simple change in the cationic component in the catanionic surfactant promotes remarkable changes in the RMs interface with interesting consequences, in particular when using the systems as nanoreactors.  相似文献   

18.
建立了测定白醋和豆腐水中常见的的3种单糖(半乳糖、葡萄糖、果糖),以及蔗糖、蜜二糖、棉子糖和水苏糖等大豆低聚糖的方法.以NaOH淋洗液梯度淋洗,7种糖在CarboPac PA10高效阴离子交换柱(HPAEC)上可以在30 min内完成分离.使用脉冲安培检测器(PAD)进行测定,7种糖的检出限(进样25 μL,S/N=3)分别为3、2、3、6、4、7和6 μg/L,且均具有较宽的线性范围(0.02~20 mg/L).白醋和豆腐水样品测定的相对标准偏差在0.15%~3.16%之间,7种糖的加标回收率在92%~104%之间; 本方法检测糖简便快捷、分离效果好、无需衍生、灵敏度高,适用于大豆及大豆制品中的常见糖组分的分析.  相似文献   

19.
Oxygen formation through water oxidation catalysis is a key reaction in the context of fuel generation from renewable energies. The number of homogeneous catalysts that catalyze water oxidation at high rate with low overpotential is limited. Ruthenium complexes can be particularly active, especially if they facilitate a dinuclear pathway for oxygen bond formation step. A supramolecular encapsulation strategy is reported that involves preorganization of dilute solutions (10?5 m ) of ruthenium complexes to yield high local catalyst concentrations (up to 0.54 m ). The preorganization strategy enhances the water oxidation rate by two‐orders of magnitude to 125 s?1, as it facilitates the diffusion‐controlled rate‐limiting dinuclear coupling step. Moreover, it modulates reaction rates, enabling comprehensive elucidation of electrocatalytic reaction mechanisms.  相似文献   

20.
We report a very efficient homogeneous system for the visible‐light‐driven hydrogen production in pure aqueous solution at room temperature. This comprises [RhIII(dmbpy)2Cl2]Cl ( 1 ) as catalyst, [Ru(bpy)3]Cl2 ( PS1 ) as photosensitizer, and ascorbate as sacrificial electron donor. Comparative studies in aqueous solutions also performed with other known rhodium catalysts, or with an iridium photosensitizer, show that 1) the PS1 / 1 /ascorbate/ascorbic acid system is by far the most active rhodium‐based homogeneous photocatalytic system for hydrogen production in a purely aqueous medium when compared to the previously reported rhodium catalysts, Na3[RhI(dpm)3Cl] and [RhIII(bpy)Cp*(H2O)]SO4 and 2) the system is less efficient when [IrIII(ppy)2(bpy)]Cl ( PS2 ) is used as photosensitizer. Because catalyst 1 is the most efficient rhodium‐based H2‐evolving catalyst in water, the performance limits of this complex were further investigated by varying the PS1 / 1 ratio at pH 4.0. Under optimal conditions, the system gives up to 1010 turnovers versus the catalyst with an initial turnover frequency as high as 857 TON h?1. Nanosecond transient absorption spectroscopy measurements show that the initial step of the photocatalytic H2‐evolution mechanism is a reductive quenching of the PS1 excited state by ascorbate, leading to the reduced form of PS1 , which is then able to reduce [RhIII(dmbpy)2Cl2]+ to [RhI(dmbpy)2]+. This reduced species can react with protons to yield the hydride [RhIII(H)(dmbpy)2(H2O)]2+, which is the key intermediate for the H2 production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号