首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe herein the first halogen dance (HD) in continuous flow on 2-chloro-3-bromopyridine by selectively trapping a (pyridin-4-yl)lithium species that is known to undergo the halogen-dance process. In addition, this lithiated intermediate was trapped at lower temperature before the HD occurs. The HD process was extended to fluoro-iodopyridines by using various electrophiles to afford 28 examples with yields ranging from 42 to 97 % with very short residence times. Finally, scale up of the reaction was demonstrated, affording a promising space-time yield (STY) of 4.2 kg.h−1.L−1.  相似文献   

2.
Reductive elimination of alkyl−PdII−O is a synthetically useful yet underdeveloped elementary reaction. Here we report that the combination of an H-bonding donor [PyH][BF4] and AgNO3 additive under toluene/H2O biphasic system can enable such elementary step to form alkyl nitrate. This results in the Pd0-catalyzed asymmetric carbonitratations of (Z)-1-iodo-1,6-dienes with (R)-BINAP as the chiral ligand, affording alkyl nitrates up to 96 % ee. Mechanistic studies disclose that the reaction consists of oxidative addition of Pd0 catalyst to vinyl iodide, anion ligand exchange between I and NO3, alkene insertion and SN2-type alkyl−PdII−ONO2 reductive elimination. Evidences suggest that H-bonding interaction of PyH⋅⋅⋅ONO2 can facilitate dissociation of O2NO ligand from the alkyl−PdII−ONO2 species, thus enabling the challenging alkyl−PdII−ONO2 reductive elimination to be feasible.  相似文献   

3.
Propane dehydrogenation (PDH) has great potential to meet the increasing global demand for propylene, but the widely used Pt-based catalysts usually suffer from short-term stability and unsatisfactory propylene selectivity. Herein, we develop a ligand-protected direct hydrogen reduction method for encapsulating subnanometer bimetallic Pt–Zn clusters inside silicalite-1 (S-1) zeolite. The introduction of Zn species significantly improved the stability of the Pt clusters and gave a superhigh propylene selectivity of 99.3 % with a weight hourly space velocity (WHSV) of 3.6–54 h−1 and specific activity of propylene formation of 65.5 mol gPt−1 h−1 (WHSV=108 h−1) at 550 °C. Moreover, no obvious deactivation was observed over PtZn4@S-1-H catalyst even after 13000 min on stream (WHSV=3.6 h−1), affording an extremely low deactivation constant of 0.001 h−1, which is 200 times lower than that of the PtZn4/Al2O3 counterpart under the same conditions. We also show that the introduction of Cs+ ions into the zeolite can improve the regeneration stability of catalysts, and the catalytic activity kept unchanged after four continuous cycles.  相似文献   

4.
The free carbene 1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene reacts with trans,cis-RuHCl(PPh3)2(ampy) (ampy = 2-(aminomethyl)pyridine) affording an orthometalated N-heterocyclic carbene complex characterized by an X-ray diffraction study. This compound in presence of NaOH shows very high catalytic activity for the transfer hydrogenation of several ketones to alcohols using 2-propanol as hydrogen source, affording TOF values up to 120,000 h−1 (at 50% conversion).  相似文献   

5.
The integration of highly active single atoms (SAs) and atom clusters (ACs) into an electrocatalyst is critically important for high-efficiency two-electron oxygen reduction reaction (2e ORR) to hydrogen peroxide (H2O2). Here we report a tandem impregnation-pyrolysis-etching strategy to fabricate the oxygen-coordinated Fe SAs and ACs anchored on bacterial cellulose-derived carbon (BCC) (FeSAs/ACs-BCC). As the electrocatalyst, FeSAs/ACs-BCC exhibits superior electrocatalytic activity and selectivity toward 2e ORR, affording an onset potential of 0.78 V (vs. RHE) and a high H2O2 selectivity of 96.5 % in 0.1 M KOH. In a flow cell reactor, the FeSAs/ACs-BCC also achieves high-efficiency H2O2 production with a yield rate of 12.51±0.18 mol gcat−1 h−1 and a faradaic efficiency of 89.4 %±1.3 % at 150 mA cm−2. Additionally, the feasibility of coupling the produced H2O2 and electro-Fenton process for the valorization of ethylene glycol was explored in detail. The theoretical calculations uncover that the oxygen-coordinated Fe SAs effectively regulate the electronic structure of Fe ACs which are the 2e ORR active sites, resulting in the optimal binding strength of *OOH intermediate for high-efficiency H2O2 production.  相似文献   

6.
The development of efficient electrocatalysts to generate key *NH2 and *CO intermediates is crucial for ambient urea electrosynthesis with nitrate (NO3) and carbon dioxide (CO2). Here we report a liquid-phase laser irradiation method to fabricate symbiotic graphitic carbon encapsulated amorphous iron and iron oxide nanoparticles on carbon nanotubes (Fe(a)@C-Fe3O4/CNTs). Fe(a)@C-Fe3O4/CNTs exhibits superior electrocatalytic activity toward urea synthesis using NO3 and CO2, affording a urea yield of 1341.3±112.6 μg h−1 mgcat−1 and a faradic efficiency of 16.5±6.1 % at ambient conditions. Both experimental and theoretical results indicate that the formed Fe(a)@C and Fe3O4 on CNTs provide dual active sites for the adsorption and activation of NO3 and CO2, thus generating key *NH2 and *CO intermediates with lower energy barriers for urea formation. This work would be helpful for design and development of high-efficiency dual-site electrocatalysts for ambient urea synthesis.  相似文献   

7.
A unique and effective interaction between the peripheral aromatic blades makes hexaarylbenzenes (HABs) attractive in fundamental research as well as for various applications such as molecular wires, sensors, and supramolecular assemblies. The chiroptical responses of HABs are susceptible to environmental factors such as solvent and temperature owing to the dynamic conformational transitions between the conformers. In this study, pressure dependence on the propeller chiral HABs in two different solvents was studied in detail. The effective differential volumes for two different equilibria were determined by quantitative analyses of CD spectra, affording very large differential volumes from the propeller to toroidal conformer (ΔVT-C) of +43 and +42 cm3 mol−1, for H2 and H6 , respectively, in methylcyclohexane. The value of H6 was further enhanced to +72 cm3 mol−1 in hexane, the largest value for the typical unimolecular conformational change. Such a response of propeller chirality in HABs is expedient in designing more advanced piezo-sensitive materials.  相似文献   

8.
A new series of donor-acceptor (D-A)-type semiconductive polymers were generated by the integration of electron-deficient alkyl chain anchored triazole (TA) moieties and electron-rich pyrene units into the polymer skeleton. The polymer series demonstrated satisfactory light-harvesting ability and suitable band gaps. In the series, polymer P-TAME benefits from a minimized exciton binding energy, strongest D-A interaction, and favorable hydrophilicity, affording an outstanding photocatalytic H2 evolution rate of ca. 100 μmol h−1 (10 mg polymer, AQY420 nm=8.9 %) and H2O2 production rate of ca. 190 μmol h−1 (20 mg polymer) under visible-light irradiation, which is superior to most currently reported polymers. All polymers in the series can mediate water oxidation reactions to evolve O2. Thus, these TA-based polymers open up a new avenue toward tailor-made efficient photocatalysts with broad photocatalytic activities.  相似文献   

9.
10.
A spectrophotometric method for the determination of chlorhexidine acetate is described. The reaction between chlorhexidine acetate and chloranil took place in an alcohol-acetone solution at room temperature. The composition of the charge transfer complex is 1:2. Beer's law is obeyed in the concentration range of 15--270 μg·mL-1 with correlation coefficient 0.9995. The apparent molar absorptivity is 2.21×103 L·mol-1·cm-1 at 412 nm. The method is accurate (with a recovery of 100±1.6%) and precise (RSD=1.0%). It was successfully applied to determine chlorhexidine acetate in suppository or disinfectant solution.  相似文献   

11.
In this paper, we described the design, synthesis, and characterization of two novel naphthalene diimide (NDI) core-based targets modified with terminal fullerene (C60) yield – so called S4 and S5 , in which NDI bearing 1 and 2 molecules of C60, respectively. The absorption, electrochemical and thin-film transistor characteristics of the newly developed targets were investigated in detail. Both S4 and S5 displayed broad absorption in the 450–500 nm region, owing to the effect of conjugation due to fullerene functionalities. The electrochemical measurement suggested that the HOMO and the LUMO energy levels can be altered with the number of C60 units. Both S4 and S5 were employed as organic semiconductor materials in n-channel transistors. The thin film transistor based on S4 exhibited superior electron mobility (μe) values ranging from 1.20×10−4 to 3.58×10−4 cm2 V−1 s−1 with a current on-off ratio varying from 102 to 103 in comparison with the performance of S5 based transistor, which exhibited μe ranging from 8.33×10−5 to 2.03×10−4 cm2 V−1 s−1 depending on channel lengths.  相似文献   

12.
Iwona Gęca 《Electroanalysis》2023,35(3):e202200256
An anodic stripping voltammetric procedure for the determination of bismuth in the presence of excess of Cu2+ ions at two ex situ plated gold film electrodes was described. The procedure is based on utilization of two deposition and two stripping steps system. The presented procedure ensures increasing the sensitivity of Bi3+ determination and minimization of interferences related to peaks’ overlapping. The calibration graph for bismuth determination was linear from 2.5×10−9 to 2×10−8 mol L−1 for deposition time of 300 s at both working electrodes while detection limit was 7.7×10−10 mol L−1.  相似文献   

13.
Cavity ring‐down UV absorption spectroscopy was used to study the kinetics of the recombination reaction of FCO radicals and the reactions with O2 and NO in 4.0–15.5 Torr total pressure of N2 diluent at 295 K. k(FCO + FCO) is (1.8 ± 0.3) × 10−11 cm3 molecule−1 s−1. The pressure dependence of the reactions with O2 and NO in air at 295 K is described using a broadening factor of Fc = 0.6 and the following low (k0) and high (k) pressure limit rate constants: k0(FCO + O2) = (8.6 ± 0.4) × 10−31 cm6 molecule−1 s−1, k(FCO + O2) = (1.2 ± 0.2) × 10−12 cm3 molecule−1 s−1, k0(FCO + NO) = (2.4 ± 0.2) × 10−30 cm6 molecule−1 s−1, and k (FCO + NO) = (1.0 ± 0.2) × 10−12 cm3 molecule−1 s−1. The uncertainties are two standard deviations. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 130–135, 2001  相似文献   

14.
The analytical characteristics of a laboratory-scale micro-X-ray fluorescence spectrometer, based on a rotating anode X-ray generator and capillary optics, are described. Usually, a microbeam 15 μm in diameter, derived from a copper or molybdenum anode operated at 45 kV, is used for sample irradiation. Elemental yields around the 1 count s−1(μg cm−2)−1 level are obtained, corresponding to absolute detection limits for thin samples in the 0.05–1 pg range and to relative MDL levels of 3–10 ppm for thick organic samples. The use of the instrument for studying (trace) element migration in Roman glass and for the nondestructive analysis of decorations on Japanese 18th century porcelain vases is described.  相似文献   

15.
There is a strong interest in finding highly soluble redox compounds to improve the energy density of redox flow batteries (RFBs). However, the performance of electrolytes is often negatively influenced by high solute concentration. Herein, we designed a high-potential (0.5 V vs. Ag/Ag+) catholyte for RFBs, where the charged and discharged species are both gaseous nitrogen oxides (NOx). These species can be liberated from the liquid electrolyte and stored in a separate gas container, allowing scale-up of storage capacity without increasing the concentration and volume of the electrolyte. The oxidation of NO in the presence of NO3 affords N2O3, and the reduction of N2O3 regenerates NO and NO3, together affording the electrochemical reaction: NO3+3 NO⇌2 N2O3+e with a low mass/charge ratio of 152 grams per mole of stored electron. A proof-of-concept NOx symmetric H-cell shows 200 stable cycles over 400 hours with >97 % Coulombic efficiency and negligible capacity decay.  相似文献   

16.
《Electroanalysis》2017,29(6):1566-1572
In this work a simple nanostructured direct‐electron transfer bio‐electrode based on tree laccase from Rhus vernicifera is described. The electrode was implemented on a 2 mm diameter graphite mine casted with a reduced graphene surface presenting the specific capacitance of 195.8 F g−1. About 10 μl of mixture between 25 mg mL−1 laccase suspension and 5 mg mL−1 single‐walled carbon nanotubes in 2 % SDS is dropped over the surface followed by 5 μl of the biological friendly tetrakis(2,3‐dihydroxypropyl)‐silane monomer sol to provide physical entrapment in a silica matrix after gelation. The rigidity of enzyme encapsulation allowed to obtain a constant enzyme turnover of about 16 min−1 in the extended pH range of 6.0‐7.5, being the activity almost proportional to the temperature used in the interval between 25 and 40 °C. The graphite‐graphene/SWCNT‐laccase/sol‐gel electrode enabled a proportional response to molecular oxygen up to the concentration of 0.45 mmol L−1 and is capable to generate the maximum power of 4.5 μW cm−2 at 0.250 V vs the AgCl/Ag reference electrode in quiescent oxygen saturated solution.  相似文献   

17.
This work presents the kinetic study of the decomposition in NaOH medium of mercury jarosite whose approximate formula is [Hg0.39(H3O)0.22]Fe2.71(SO4)2.17(OH)4.79(H2O)2.09. The reaction progress takes place on the surface of the compound with diffusion of the hydroxyl ions (OH) from the solution to the particle surface moving the reaction front toward the interior of the particle, with the release of ions SO42− and Hg2+ from the core to the reaction medium. The decomposition curve can be described by three kinetics stages: an induction period followed by a progressive conversion period and ending the reaction in the stabilization zone. The results of X−ray diffraction showed that as the decomposition reaction progresses the partially decomposed solids lost its crystallinity ending as amorphous solids. For the induction period, the reaction order (n ) was 0.52 for [OH] < 0.0187 mol L−1 and when [OH] > 0.0187 mol L−1 n = 1.48, whereas the calculated activation energy (Ea ) was 81.7 kJ mol−1. For the progressive conversion period n = 0.99 for [OH] > 0.0057 mol L−1 and for lower concentrations n ≈ 0, with Ea = 56.9 kJ mol−1, confirming that the decomposition process is controlled by the chemical reaction. Based on the calculated kinetic parameters, the partial and global kinetic expressions of the decomposition process were proposed. These models were compared with the experimental results, and it was favorably proven and described the decomposition process of the mercury jarosite in alkaline medium.  相似文献   

18.
The transport of copper(II) through a supported liquid membrane using MOC-55 TD (oxime derivative), dissolved in Iberfluid, as a carrier has been studied. A physico-chemical model is derived to describe the transport mechanism which consists of: diffusion process through the feed aqueous diffusion layer, fast interfacial chemical reaction and diffusion through the membrane. The experimental data can be explained by mathematical equations describing the rate of transport. The mass transfer coefficient was calculated from the described model as 2.8×10−3 cm s−1, the thickness of the aqueous boundary layer as 2.6×10−3 cm−1 and the membrane diffusion coefficient of the copper-containing species as 1.2×10−8 cm2 s−1.  相似文献   

19.
Using a pincer platform based on a bridgehead NHC donor with functional side arms, the combined effect of increased flexibility in six-membered pyrimidine-type heterocycles compared to the more often studied five-membered imidazole, and rigidity of phosphane side arms was examined. The unique features observed include: 1) the reaction of the azolium Csp2−H bond with [Ni(cod)2] affording a carbanionic ligand in [NiCl(PCsp3HP)] ( 8 ) rather than a carbene; 2) its transformation into the NHC, hydrido complex [NiH(PCNHCP)]PF6 ( 9 ) upon halide abstraction; 3) ethylene insertion into the Ni−H bond of the latter and ethyl migration to the N−C−N carbon atom of the heterocycle in [Ni(PCEtP)]PF6 ( 10 ); and 4) an unprecedented C−P bond activation transforming the P−CNHC−P pincer ligand of 8 in a C−CNHC−P pincer and a terminal phosphanido ligand in [Ni(PPh2)(CCNHCP)] ( 15 ). The data are supported by nine crystal structure determinations and theoretical calculations provided insights into the mechanisms of these transformations, which are relevant to stoichiometric and catalytic steps of general interest.  相似文献   

20.
The living radical polymerization of methyl methacrylate initiated from aromatic sulfonyl chlorides and catalyzed by the new catalytic systems CuSBu/bpy CuSPh/bpy and CuCCPh/bpy (bpy = 2,2′‐bipyridine) is described. For a target degree of polymerization of 200, lowering the ratio of catalyst to sulfonyl chloride group from 1/1 to 0.25/1 mol/mol decreases the values of the experimental rate constant of polymerization from 5.12 × 10−2, 2.4 × 10−2, and 1.87 × 10−2 min−1 to 1.8 × 10−3, 4.9 × 10−3, and 4.2 × 10−3 min−1 for CuSBu, CuSPh, and CuCCPh, respectively, whereas the corresponding initiator efficiency increases from 62 to 99%. The external orders of reaction in the catalyst are 0.79 for CuSPh, 0.88 for CuCCPh, and 1.64 for CuSBu. A mechanistic interpretation that involves the in situ generation of, most likely, the real catalyst CuCl, starting from combinations of CuSBu, CuSPh, and CuCCPh and sulfonyl chloride or alkyl halide growing species, is suggested. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4353–4361, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号