首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Wang  Pei  Zhang  MengYi  Qu  JieHao  Wang  LuJie  Geng  JunZhao  Fu  FeiYa  Liu  XiangDong 《Cellulose (London, England)》2022,29(6):3569-3581

Quaternary ammonium compounds (QACs) have outstanding antimicrobial effect, but covalent immobilization of plentiful QAC onto cotton fiber surface to realize a durable function remains a challenge. Herein, a quaternary ammonium monomer, [2-(methacryloyloxy) ethyl] trimethylammonium chloride (DMC) was co-polymerized with methyl acrylate (MA) to prepare an antibacterial copolymer, poly(DMC-co-MA). To graft the copolymer with an improved grafting efficiency, cotton fabric was treated using carboxymethyl chitosan (CMC) to establish an amino-functionalized fiber surface first. This treatment allows the amidation reactions between the amino groups and the pendant ester groups in the poly(DMC-co-MA) to take place, achieving a durable anionic polymer coating onto the fiber surfaces with remarkably antibacterial effect. Characterization results indicated that when DMC/MA monomer ratio was 100:1, the resulting copolymer endows the modified cotton fabric with antibacterial capability that inactivates all Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Even after 50 laundering cycles, more than 98.0% of the antibacterial rate could still be retained. Moreover, the wearing comfort properties such as softness, water absorption and air permeability of the finishing cotton fabrics have been insignificantly changed by comparing to the untreated cotton fabric.

  相似文献   

2.
This research aimed to prepare cotton fibres with novel multifunctional water- and oil-repellent, antibacterial, and flame-retardant properties. A three-component equimolar sol mixture, which included 1H,1H,2H,2H-perfluorooctyltriethoxysilane, 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride, and P,P-diphenyl-N-(3-(trimethoxysilyl)propyl) phosphinic amide, was applied to the cotton fabric using the sol–gel process. The presence of the coating on the cotton fibres was confirmed by Fourier transform-infrared spectroscopy and X-ray photoelectron spectroscopy. The functional properties of the coated cotton fabric were determined from liquid contact angle measurements and antibacterial activity, burning behaviour, and thermo-oxidative stability studies. The results demonstrate that a unique, compatible, and uniform organic-inorganic hybrid polymer network was formed on the fabric surface, which preserved its simultaneous hydrophobic (water contact angle of 135 ± 2°), oleophobic (n-hexadecane contact angle of 117 ± 1°), and bactericidal (bacterial reduction of 100 %) properties and incorporated the enhanced thermo-oxidative stability of the modified cellulose fibres.  相似文献   

3.
An amino-terminated hyperbranched polymer (HBP-NH2) was grafted to cotton fabric by a reaction between the aldehyde groups of oxidized cotton fabric and the amino groups of the HBP-NH2 to provide cotton fabric with durable antimicrobial properties. The antimicrobial activities of the HBP-NH2 aqueous solutions and the HBP-NH2 grafted cotton fabrics were evaluated quantitatively against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The results indicated that the HBP-NH2 grafted cotton fabric showed 92% of bacterial reduction to S. aureus and 95% of bacterial reduction to E. coli, respectively. The antimicrobial activities of the HBP-NH2 grafted cotton fabrics were maintained at over 91% reduction level even after being exposed to 20 consecutive home laundering conditions. Several influence factors, which may affect the amount of HBP-NH2 grafted onto the cotton fabrics, were also discussed.  相似文献   

4.
Gold nanoparticles (AuNPs) have been synthesized by greener method using chloroauric acid as precursor and extract of Acorus calamus rhizome as reducing agent. Formation of AuNP was confirmed by the presence of Surface Plasmon Resonance (SPR) peak in UV–Visible spectral analysis. XRD and FT-IR spectral analyses were performed for characterization. SEM images show spherical morphology and HR-TEM images reveal nanosize of AuNPs. The AuNPs were then coated on cotton fabric by pad-dry-cure method and characterized by SEM with EDAX technique. The results reveal the deposition of AuNPs on the surface of cotton fabric. Uncoated cotton, neat extract coated cotton and extract containing AuNPs coated cotton fabrics were then tested for antibacterial activity against Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli) bacterial strains by AATCC 100 test method. It showed that the extract containing AuNPs coated cotton fabric had higher antibacterial activity than other test samples against E. coli. UV-DRS analysis performed on extract containing AuNPs coated cotton fabric showed improved UV-blocking property than uncoated cotton fabric and neat extract coated cotton fabric.  相似文献   

5.
The silica–silver core–shell particles were synthesized by simple one pot chemical method and were employed on the cotton fabric as an antibacterial agent. Extremely small (1–2 nm) silver nanoparticles were attached on silica core particles of average 270 nm size. The optimum density of the nano silver particles was found which was sufficient to show good antibacterial activity as well as the suppression in their surface plasmon resonance responsible for the colour of the core–shell particle for antibacterial textile application. The change in the density and size of the particles in the shell were monitored and confirmed by direct evidence of their transmission electron micrographs and by studying surface plasmon resonance characteristics. The colony counting method of antibacterial activity testing showed excellent results and even the least silver containing core–shell particles showed 100% activity against bacterial concentration of 104 colony counting units (cfu). The bonding between core–shell particles and cotton fabric was examined by X-ray photoelectron spectroscopy. The antibacterial activity test confirmed the firm attachment of core–shell particles to the cotton fabric as a result 10 times washed sample was as good antibacterial as that of unwashed sample. The bacterial growth was inhibited on and beneath the coated fabric, at the same time no zone of inhibition which occurs due to the migration of silver ions into the medium was observed indicating immobilization of silver nanoparticles on silica and core–shell particles on fabric by strong bonding.  相似文献   

6.
In this study, cotton fabrics were finished with Aloe vera gel along with 1,2,3,4-butanetetracarboxlic acid as a crosslinking agent using the pad-dry-cure method. The finished fabrics were characterized by Fourier transform infrared spectroscopy. The infrared spectra confirmed that the active ingredients of A. vera gel attached to the hydroxyl groups of cotton fabric via a carboxylic acid cross-linking agent. The antibacterial activity of A. vera-finished fabrics was qualitatively evaluated by the AATCC-147 method and scanning electron microscopy. It was observed that A. vera gel-finished fabric has much less bacterial adhesion. The A. vera gel-finished [concentration ≥3 % (w/v)] cotton fabric inhibited the growth of both gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria. The mechanism of cell death by A. vera gel was evaluated using transmission electron microscopy (TEM). TEM photographs suggested that the cell death is due to the destruction of the bacterial cell wall. The finished fabric was also evaluated for its performance properties such as tensile strength, crease recovery angle, bending length, etc.  相似文献   

7.
In this research, a two-component sol–gel inorganic–organic hybrid coating was prepared on a cotton fibre surface. An equimolar sol mixture of the precursors 1H,1H,2H,2H-perfluorooctyltriethoxysilane (SiF) and P,P-diphenyl-N-(3-(trimethoxysilyl)propyl) phosphinic amide (SiP) was applied to cotton fabric samples using the pad-dry-cure method. The surfaces of the untreated and coated cotton fibres were characterised using scanning electron microscopy, Fourier transform-infrared spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight-secondary ion mass spectrometry. The functional properties of the coated cotton fabric samples were investigated using static contact angle measurements with water and n-hexadecane, the ice-releasing test, antibacterial testing against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, thermogravimetric analysis in an air atmosphere, and vertical flammability tests. The results reveal the formation of a nanocomposite two-component inorganic–organic hybrid polymer network that is homogenously distributed over the cotton fibre surface. The presence of the SiP component in the two-component inorganic–organic hybrid coating did not hinder the functional properties imparted by the presence of the SiF component and vice versa, illustrating their compatibility. The cooperative action of the SiF and SiP components in the two-component coating provided the cotton fabric with exceptional multifunctionality, including simultaneous superhydrophobicity and high oleophobicity, passive antibacterial activity, and improved thermo-oxidative stability.  相似文献   

8.
Fourteen wild strains of Staphylococcus aureus positive for gene sea were tested for enterotoxins production and the minimum inhibitory concentration of Leptospermum scoparium, Origanum majorana, Origanum vulgare, Satureja montana and Thymus vulgaris essential oils (EOs) were determined. After this trial, bacteria stressed with sub-inhibitory concentration of each EO were tested for enterotoxins production by an immunoenzymatic assay and resistance to the same EO. Oregano oil exhibited the highest antibacterial activity followed by manuka and thyme oils. After the exposure to a sub-inhibitory concentration of EOs, strains displayed an increased sensitivity in more than 95% of the cases. After treatment with oregano and marjoram EOs, few strains showed a modified enterotoxins production, while 43% of the strains were no longer able to produce enterotoxins after treatment with manuka EO. The results obtained in this study highlight that exposure to sub-inhibitory concentration of EO modifies strains enterotoxins production and EOs susceptibility profile.  相似文献   

9.
The increasing occurrence of bacterial infection at the wound sites is a serious global problem, demanding the rapid development of new antibacterial materials for wound dressing to avoid the abuse of antibiotics and thereby antibiotic resistance. In this work, the authors first report on antibacterial N‐halamine polymer nanomaterials based on a strategic copolymerization of 3‐allyl‐5,5‐dimethylhydantoin (ADMH) and methyl methacrylate (MMA), which exhibits in vitro and in vivo antimicrobial efficacy against pathogenic bacteria including Staphylococcus aureus and Escherichia coli. Particularly, when a biological evaluation is run for wound therapy, the N‐halamine polymer nanomaterials exhibit a powerful antibacterial efficiency and wound healing ability after a series of histological examination of mouse wound. After the evaluation of biological and chemical surroundings, the proposed four‐stage mechanism suggests that, with unique antibacterial N? Cl bonds, the N‐halamine polymer nanomaterials can disrupt the bacterial membrane, as a result causing intracellular content leaked out and thereby cell death. Based on the synergistic action of antibacterial and wound therapy, the N‐halamine polymer nanomaterials are expected to be promising as wound dressing materials in medical healing and biomaterials.  相似文献   

10.
Abstract

Poly(propylene imine) dendrimers from first and third generation modified with 1,8-naphthalimide units and their Cu(II) complexes have been characterized by fluorescence and EPR spectroscopy. Cotton fabric has been modified with these dendrimers and their color characteristics were determined. The antimicrobial activity of dendrimer ligands and their Cu(II) complexes in solution and after their deposition on a cotton fabric was investigated. Good antibacterial effect of dendrimer ligands has been obtained, which is enhanced at their Cu(II) complexes. After their deposition on cotton fabric metallodendrimers exhibit good antibiofilm activity.  相似文献   

11.
A new polyamidoamine metallodendrimer modified with eight 1,8-naphthalimide units was synthesized. The Cu(II) complex has been investigated by EPR spectroscopy and it has shown that 17 copper ions have involved in the dendrimer complex. To confirm the presence of metallodendrimers on the cotton surface, scanning electron microscopy characterization has been used. In vitro antimicrobial activity of the metallodendrimer against different pathogens was investigated and compared to the dendrimer ligand free of copper ions. Both dendrimers were deposited on a cotton fabric and antibacterial activity of the treated cotton samples was investigated against model Gram-positive and Gram-negative bacteria. It has been shown that the studied dendrimers reduce bacterial growth and prevent the formation of biofilms. The metallodendrimer showed stronger antimicrobial and biofilm inhibiting abilities than those of the free of Cu(II) ions ligand.  相似文献   

12.
The cotton fabrics were immersed in 1–5?mM aqueous silver nitrate solutions maintained at 80°C for 24?h to in situ generate silver nanoparticles. The presence of silver nanoparticles in the nanocomposite films was proved by microscopic observation. Fourier transform infrared spectra indicated the role of hydroxyl and carboxyl groups of cotton fabric in reducing the silver salt to nanosilver. The nanocomposite cotton fabrics showed good antibacterial activity against Gram-negative and Gram-positive bacteria. The antibacterial cotton fabrics can be considered for medical applications such as surgical aprons, wound cleaning, and dressing.  相似文献   

13.
Essential oils (EOs) are known and used for their biological, antibacterial, antifungal and antioxidant properties. Numerous studies have shown that EOs exhibit a large spectrum of biological activities in vitro. The incidence of drug-resistant pathogens and the toxicity of antibiotics have drawn attention to the antimicrobial activity of natural products, encouraging the development of alternative treatments. The aim of this study was to analyse the phytochemical and the cytotoxic characteristic of 36 EOs; we then evaluated the antimicrobial activity of the less-toxic EOs on Gram-positive, Gram-negative and fungi strains. The results showed low cytotoxicity in seven EOs and good activity against Gram-negative and Candida spp. strains. Based on our results, EOs could be proposed as a novel group of therapeutic agents. Further experiments are necessary to confirm their pharmacological effectiveness, and to determine potential toxic effects and the mechanism of their activity in in vivo models.  相似文献   

14.
A cotton fabric was coated with a polymer that contains both poly(dimethyl siloxane) (PDMS) and poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA). When the repeat unit number of PDMS is about three‐fold that of PDMAEMA and the fabric is exposed to air, the fabric is superhydrophobic because PDMS in the coating covers the PDMAEMA chains. Upon contact with an oil‐in‐water emulsion, the water‐soluble PDMAEMA rises to the top and the side in contact with the emulsion becomes hydrophilic. The emerged PDMAEMA chains then cause the emulsion droplets to coagulate, and the aggregated oil fills the pores on the superhydrophobic side of the fabric. The oil‐impregnated side remains hydrophobic even upon prolonged contact with water. Thus, a Janus fabric is elegantly generated in situ and sustained. This easy‐to‐prepare Janus fabric rapidly and efficiently separates oil from emulsions and may find practical applications.  相似文献   

15.
This study discusses the possibility of using a corona discharge at atmospheric pressure and air RF plasma at low pressure for the cotton fibre activation prior to deposition of colloidal TiO2 nanoparticles in order to enhance antibacterial, UV protective and self-cleaning properties. X-ray photoelectron spectroscopy (XPS) analysis confirmed the presence of TiO2 nanoparticles on the surface of cotton fibres. XPS elemental mapping indicated that TiO2 nanoparticles were more evenly distributed across the surface of untreated and corona pre-treated cotton fabrics in comparison with RF plasma pre-treated fabric. Atomic absorption spectroscopy measurements revealed that the equivalent total content of TiO2 in the cotton fabrics pre-treated by corona and RF plasma was 31% higher than in the fabric that did not undergo any treatment prior to loading of TiO2 nanoparticles. In order to achieve maximum bacteria (Gram-negative bacteria Escherichia coli) reduction, untreated cotton fabric had to be loaded with colloidal TiO2 nanoparticles twice, but only once following corona or RF plasma pre-treatment. Deposition of TiO2 nanoparticles onto cotton fabrics provided maximum UV protective rating of 50+. Extraordinary photocatalytic activity of TiO2 nanoparticles deposited onto cotton fabrics was proved by self-cleaning of blueberry juice stains and photodegradation of methylene blue in aqueous solution under UV illumination.  相似文献   

16.
Two generations of poly (propylene imine) dendrimer with amino terminated groups (G2- and G5-PPI-NH2) were grafted on cotton cellulose fabric using cross linking agents (citric or glutaric acids). Fourier transform infrared (FTIR) spectroscopy identified ester groups which were formed between hydroxyl groups of the cotton fabric and carboxylic groups of the cross linking agents. Also, attenuated total reflectance-FTIR (ATR-FTIR) analysis confirmed formation of amide groups between the carboxylic groups of the cross linking agents and the amino end groups of the dendrimers. Nitrogen content (N-content) analysis revealed the presence of the dendrimers on the cotton fabric even after 5 washing cycles. In order to study the dispersion of the PPI dendrimers on the surface of the cotton fabric, field emission scanning electron microscopy (FE-SEM) was performed. The particle size distribution of the G2- and G5-PPI-NH2 aqueous solutions was also determined by dynamic light scattering (DLS) analysis. Antimicrobial activity of the PPI dendrimer aqueous solutions and the cotton cellulose fabric grafted with the dendrimers was evaluated both quantitatively and qualitatively against Gram-positive bacterium (Staphylococcus aureus), Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli) and fungus (Candida albicans). The dendrimer grafted cotton cellulose fabric exhibited a 99 % reduction in bacterial counts against S. aureus, E. coli and C. albicans. The antimicrobial activities of the grafted cotton cellulose fabric with the PPI dendrimers were maintained even after 5 washing cycles.  相似文献   

17.
Necrotic enteritis (NE) caused by Clostridium perfringens is one of the most important enteric diseases in poultry. The antibacterial activity of two different essential oil (EO) blends against C. perfringens was investigated both in vitro and in vivo. Additionally, the immunological response to EO treatment was assessed. In the in vitro study, the antibacterial activity of EO formulas and commonly used antibiotics was evaluated against C. perfringens using disk diffusion assay, minimum inhibitory concentration (MIC) assay, and minimum bactericidal concentration (MBC) assay. In the in vivo study, NE experimental infection was performed on 440 Ross broiler chicks at 19 days of age for 4 continuous days. The chicks were treated with either EOs or amoxicillin at 22 days of age for 5 continuous days. One day after the end of treatment, the birds’ performance was evaluated by calculating the feed conversion ratio. Serum samples from 120 birds were collected to measure the levels of IL-1β, IFN-γ, IL-8, IL-10, and IL-17. After that, all birds were slaughtered, and their small intestines were subjected to gross and histopathological evaluation. In addition, bacterial counts in the small intestines were evaluated. In the in vitro study, EOs showed higher antimicrobial activities in comparison with antibiotics against C. perfringens. In the in vivo study, birds treated with EOs showed a significant decrease in bacterial counts, a significant decrease in intestinal lesions, and a significant improvement in performance compared with untreated birds (p < 0.05). Moreover, treating birds with EOs directed the immune system toward an anti-inflammatory pathway. None of the treated birds died due to NE compared with the 10% mortality rate in untreated birds. In conclusion, EOs might be an effective and safe alternative to antibiotics in the treatment of chicken NE.  相似文献   

18.
《Arabian Journal of Chemistry》2020,13(11):8012-8025
The objectives of this study were to profile ginger essential oils (EOs) phytochemical constituents and antimicrobial activity against important phytopathogens. Ginger EOs was extracted using a modified Clevenger-type apparatus by hydro-distillation then followed by GCMS and headspace analysis of its phytochemical constituents. The phytoconstituents identified were monoterpenes and sesquiterpene hydrocarbons. Food poisoned and disc diffusion techniques were applied to determine the percentage inhibition of fungal mycelial and bacterial growth respectively. The EOs produced mycelial growth inhibition in all the test fungal pathogens after five days of incubation. The MIC and MFC of the EOs on the tested fungi were in the range of 1 μl/ml and 5–6 μl/ml, respectively. The bacterial growth of all the tested isolates was also affected by EOs at 100–500 µl/ml, from weak to strong antibacterial activity. The EOs affected the Xanthomonas oryzae pv. oryzae-strain A isolate most at a higher concentration of 400–500 μl/ml with mean inhibition of 20.66 mm and 22.66 mm respectively, which are found to be effective. The MIC values on the bacterial pathogens were at100 μl/ml. The inhibition zone of positive control (streptomycin) at 15 µg/disc was 25.00 mm and appeared to be efficient. Metabolomics analysis to concurrently quantify variability among multiple compounds in the data sets and identify such compounds responsible for the X. oryzae pv. oryzae-strain-A inhibition were determined. The cross-validated PLS model has shown a strong correlation between ginger EOs and bioactivity. The action of ginger EOs on the cell structure was fully identified using SEM by observing the changes in morphology and integrity of X. oryzae pv. oryzae-strain-A cells. The DMSO treatment (control) showed a normal rod shape cell, while treatment with the ginger EOs showed irregular shape with sunken surfaces, and treatment with antibiotics display abnormal growth of the cells. These findings can, therefore, propose that the ginger EOs could be used as a new antimicrobial agent in suppressing the growth of phytopathogens and as possible new alternatives to synthetic fungicides and bactericides.  相似文献   

19.
Multifunctional, water and oil repellent and antimicrobial finishes for cotton fibres were prepared from a commercially available fluoroalkylfunctional water-born siloxane (FAS) (Degussa), nanosized silver (Ag) (CHT) and a reactive organic–inorganic binder (RB) (CHT). Two different application procedures were used: firstly, one stage treatment of cotton fabric samples by FAS sol (i), as well as by a sol mixture constituted from all three precursors (Ag–RB–FAS, procedure 1S) (ii), and secondly, two stage treatment of cotton by Ag–RB sol and than by FAS sol (Ag–RB + FAS, procedure 2S) (iii). The hydrophobic and oleophobic properties of cotton fabrics treated by procedures (i)–(iii) before and after consecutive (up to 10) washings were established from contact angle measurements (water, diiodomethane and n-hexadecane) and correlated with infrared and XPS spectroscopic measurements. The results revealed that even after 10 washing cycles cotton treated with Ag–RB + FAS (2S) retained an oleophobicity similar to that of the FAS treated cotton, while the Ag–RB–FAS (1S) cotton fibres exhibited a loss of oleophobicity already after the second washing, even though fluorine and C–F vibrational bands were detected in the corresponding XPS and IR spectra. The antibacterial activity of cotton treated by procedures (i)–(iii) was tested by its reduction of the bacteria Escherichia coli and Staphylococcus aureus following the AATCC 100-1999 standard method and EN ISO 20743:2007 transfer method. The reduction in growth of both bacteria was nearly complete for the unwashed Ag–RB and Ag–RB–FAS (S1), but for the unwashed Ag–RB + FAS (S2) treated cotton no reduction of S. aureus and 43.5 ± 6.9% reduction of E. coli was noted. After the first washing, the latter two finishes exhibited nearly a complete reduction of E. coli but for the Ag–RB treated cotton the reduction dropped to 88.9 ± 3.4. None of the finishes retained antibacterial properties after 10 repetitive washings. The beneficial and long-lasting low surface energy effect of FAS finishes in the absence of Ag nanoparticles, which led to the “passive” antibacterial properties of FAS treated cotton fabrics, was established by applying the EN ISO 20743:2007 transfer method. The results revealed a reduction in bacteria of about 21.9 ± 5.7% (FAS), 13.1 ± 4.8% (Ag–RB–FAS (S1)) and 41.5 ± 3.7% (Ag–Rb + FAS (S2)), while no reduction of the growth of bacteria was observed for cotton treated with Ag nanoparticles after 10 repetitive washings. The physical properties (bending rigidity, breaking strength, air permeability) of finished cotton samples were determined, and showed increased fabric softness and flexibility as compared to the Ag–RB treated cotton, but a slight decrease of breaking strength in the warp and weft directions, while air permeability decreased for all type of finishes.  相似文献   

20.
In this paper we discuss the preparation and comparative evaluation of silver (I) [Ag(I)] nonwoven and woven antimicrobial barrier fabrics generated from commercial calcium‐sodium alginates and laboratory prepared sodium carboxymethyl (CM) cotton nonwovens and CM‐cotton printcloth for potential use as wound dressings. Degrees of CM substitution (DS) in cotton nonwoven and printcloth samples by titrimetry were 0.38 and 0.10, respectively. Coordination of Ag(I) with carboxylates on fabrics was effected by ion exchange and nitrates were removed by washing to mitigate nitrate ion toxicity issues. Durability of silver coordinated fabrics was tested by soaking them in deionized water with slight agitation at 50°C. Ag(I) alginates and nonwoven Ag(I)‐CM‐cottons lost structural integrity in water. Ag‐CM‐cotton printcloth samples retained structural integrity even after four soak‐and‐dry cycles, were smooth to the touch when dry, and were smoother when moistened. They could be easily peeled from wound surfaces without inducing trauma. Solid‐state carbon‐13 (13C) nuclear magnetic resonance (NMR) spectrometry was used to observe changes in carbonyl resonances in Ag(I) alginates and Ag(I)‐CM‐printcloth, and the chemical shift positions of carbonyl resonances of uncoordinated and Ag(I) coordinated fabrics did not change. Inductively coupled plasma‐mass spectrometry (ICP‐MS) was used following fabric digestion to determine the total Ag(I) ion content in fabrics. Ag(I) alginates were found to hold about 10–50 mg Ag(I) per gram fabric; and Ag(I) cotton woven and nonwoven fabrics held about 5–10 mg Ag(I) ions per gram fabric. Kinetic release of Ag(I) after soaking once in physiological saline was studied with ICP‐MS to estimate the availability of Ag(I) upon a single exchange with Na(I) ions on wound surfaces. Alginates released between ~13 and 28% of coordinated Ag(I), and CM‐cotton nonwovens and CM‐cotton printcloth released ~14 and 3% of coordinated Ag(I) ions, respectively. Finally, Ag(I) alginates and Ag(I)‐CM‐cotton printcloth samples were evaluated against Gram‐positive Staphylococcus aureus and Gram‐negative Klebsiella pneumoniae. Ag(I) alginates suppressed 99.95% of bacterial growth in vitro. Even after four soak‐and‐dry cycles in deionized water Ag(I)‐CM‐cotton printcloth suppressed 99.99% of bacterial growth in vitro. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号