首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calculations are presented of ground state resonance structure at THz frequencies for molecular clusters of the high explosive RDX using density functional theory (DFT). The spectral features of this resonance structure are due to coupling of resonance modes for ground state excitation. In particular, the coupling among ground state resonance modes provides a reasonable molecular level interpretation of spectral features associated with THz excitation of molecular clusters. THz excitation is associated with frequencies that are characteristically perturbative to molecular electronic states, in contrast to frequencies that can induce appreciable electronic state transition. Owing to this characteristic of THz excitation, one is able to make a direct association between local oscillations about ground-state minima of molecules, either isolated or comprising a cluster, and THz excitation spectra. The DFT software GAUSSIAN was used for the calculations of ground state resonance structure presented here.  相似文献   

2.
An efficient approximate scheme for density-functional theory (DFT) calculations, which eliminates the time-consuming self-consistent-field (SCF) procedure, is proposed using a dual-level DFT approach. In this approach, dual levels of basis sets and exchange-correlation functionals are adopted. The dual-level DFT approach is based on the idea that the total electron density in the ground state can be represented in terms of the density evaluated using the low-quality basis set and the low-cost exchange-correlation functional. Since the SCF procedure is avoided in the total energy evaluation, the dual-level DFT approach drastically reduces the computational cost. The applications of several dual-level DFT calculations to molecular systems show that our approach is more efficient than the self-consistent DFT approach with a moderate accuracy.  相似文献   

3.
Fluorene‐thiophene (FT)‐based oligomers and polymers and their derivatives are good candidates for organic blue light‐emitting diodes. In this work, the intrinsic properties of the ground and excited states of FT monomer and its derivatives are studied. The ground‐state optimized structures and energies are obtained using molecular orbital theory and density functional theory (DFT). The ground‐state potential energy curves or surfaces of FT and its derivatives are also obtained. All derivatives are nonplanar in their electronic ground states. The character and energy of the first 20 singlet–singlet electronic transitions are investigated by applying the time‐dependent density functional theory (TD‐DFT) approximations to the correspondingly optimized ground‐state geometries. The lowest singlet state is studied with the configuration interaction (singles) approach (CIS). Excitation energies are red shifted when the FT unit or its derivatives are extended longitudinally. CIS results suggest geometry relaxation in the first singlet excited state. When available, a comparison is made with experimental results. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

4.
5.
It is possible to reformulate the reaction field (RF ) model of continuum solvent effects, by considering an approximate expression describing the energy changes from one ground state to another, in the frame of density functional theory (DFT ). The energy functional for an arbitrary electronic system coupled to a spin-independent electrostatic external perturbation is used to derive the well-known Born expression giving the electrostatic component of the solvation energy of an atomic ion. The approximate RF –DFT model is illustrated for a series of representative singly positive and negatively charged atomic ions. A Kohn–Sham (KS )-like formalism is then proposed to compute solvation energies within a self-consistent field scheme. The extension of the RF -DFT model to molecular systems is also outlined. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
We present a graph-theoretic approach to adaptively compute many-body approximations in an efficient manner to perform (a) accurate post-Hartree–Fock (HF) ab initio molecular dynamics (AIMD) at density functional theory (DFT) cost for medium- to large-sized molecular clusters, (b) hybrid DFT electronic structure calculations for condensed-phase simulations at the cost of pure density functionals, (c) reduced-cost on-the-fly basis extrapolation for gas-phase AIMD and condensed phase studies, and (d) accurate post-HF-level potential energy surfaces at DFT cost for quantum nuclear effects. The salient features of our approach are ONIOM-like in that (a) the full system (cluster or condensed phase) calculation is performed at a lower level of theory (pure DFT for condensed phase or hybrid DFT for molecular systems), and (b) this approximation is improved through a correction term that captures all many-body interactions up to any given order within a higher level of theory (hybrid DFT for condensed phase; CCSD or MP2 for cluster), combined through graph-theoretic methods. Specifically, a region of chemical interest is coarse-grained into a set of nodes and these nodes are then connected to form edges based on a given definition of local envelope (or threshold) of interactions. The nodes and edges together define a graph, which forms the basis for developing the many-body expansion. The methods are demonstrated through (a) ab initio dynamics studies on protonated water clusters and polypeptide fragments, (b) potential energy surface calculations on one-dimensional water chains such as those found in ion channels, and (c) conformational stabilization and lattice energy studies on homogeneous and heterogeneous surfaces of water with organic adsorbates using two-dimensional periodic boundary conditions.  相似文献   

7.
First-principles electronic structure calculations within a gradient corrected density functional formalism have been carried out to investigate the electronic structure and magnetic properties of Pd(13) clusters. It is shown that a bilayer ground-state structure that can be regarded as a relaxed bulk fragment is most compatible with the experimental results from Stern-Gerlach measurements. An icosahedral structure, considered to be the ground state in numerous previous studies, is shown to be around 0.14 eV above the ground state. A detailed analysis of the molecular orbitals reveals the near degeneracy of the bilayer or icosahedral structures is rooted in the stabilization by p- or d-like cluster orbitals. The importance of low-lying spin states in controlling the electronic and magnetic properties of the cluster is highlighted.  相似文献   

8.
Anion photoelectron spectroscopy and quantum chemical calculations at the density functional theory (DFT), coupled cluster theory (CCSD(T)), and complete active space self-consistent field (CASSCF) theory levels are employed to study the reduced transition metal oxide clusters M(4)O(10)(-) (M = Cr, W) and their neutrals. Photoelectron spectra are obtained at 193 and 157 nm photon energies, revealing very different electronic structures for the Cr versus W oxide clusters. The electron affinity and HOMO-LUMO gap are measured to be 3.68 ± 0.05 and 0.7 eV, respectively, for the Cr(4)O(10) neutral cluster, as compared to 4.41 ± 0.04 and 1.3 eV for W(4)O(10). A comprehensive search is performed to determine the ground-state structures for M(4)O(10) and M(4)O(10)(-), in terms of geometry and electronic states by carefully examining the calculated relative energies at the DFT, CCSD(T), and CASSCF levels. The ground states of Cr(4)O(10) and Cr(4)O(10)(-) have tetrahedral structures similar to that of P(4)O(10) with the anion having a lower symmetry due to a Jahn-Teller distortion. The ground states of W(4)O(10) and W(4)O(10)(-) have butterfly shape structures, featuring two fused five-member rings with a metal-metal multiple bond between the central metal atoms. The much stronger WW bonding than the CrCr bonding is found to be the primary cause for the different ground state structures of the reduced Cr(4)O(10)(0/-) versus W(4)O(10)(0/-) oxide clusters. The photoelectron spectra are assigned by comparing the experimental and theoretical adiabatic and vertical electron detachment energies, further confirming the determination of the ground electronic states of M(4)O(10) and M(4)O(10)(-). The time-dependent DFT method is used to calculate the excitation energies of M(4)O(10). The TD-DFT results in combination with the self-consistently calculated vertical detachment energies for some of the excited states at the DFT and CCSD(T) levels are used to assign the higher energy bands. Accurate clustering energies and heats of formation of M(4)O(10) are calculated and used to calculate accurate reaction energies for the reduction of M(4)O(12) to M(4)O(10) by CH(3)OH, as well as for the oxidation of M(4)O(10) to M(4)O(12) by O(2). The performance of the DFT method with the B3LYP and BP86 functionals in the calculations of the relative energies, electron detachment energies, and excitation energies are evaluated, and the BP86 functional is found to give superior results for most of these energetic properties.  相似文献   

9.
用密度泛函理论方法研究了镥二聚体(Lu2)低能量电子态的性质,计算了电子态相对能量、平衡键长、振动频率以及基态解离能,考察了密度泛函性质、相对论有效势种类以及Hartree—Fock交换作用大小对计算结果的影响.结果表明,无论采用何种密度泛函和相对论有效势,体系的基态都为三重态,与其他一些基于分子轨道理论的从头计算方法得到的结论是一致的.另外,与分子轨道从头计算结果以及实验结果比较发现,采用杂化密度泛函理论和Stuttgart小核有效势计算得到的结果总体吻合最好.最后,特别分析研究了B3LYP计算中Hartree—Fock交换作用大小对基态键长和基态解离能的影响,发现随着交换作用的增大,键长增长,解离能减小,这是由于5d轨道杂化导致的共价成键作用减弱造成的.  相似文献   

10.
A combined quantum mechanics/molecular mechanics (QM/MM) method is described, where the polarization between the solvent and solute is accounted for using a self-consistent scheme linear in the solvent polarization. The QM/MM method is implemented for calculation of energies and molecular response properties including the calculation of linear and quadratic response functions using the density-functional theory (DFT) and the Hartree-Fock (HF) theory. Sample calculations presented for ground-state energies, first-order ground-state properties, excitation energies, first-order excited state properties, polarizabilities, first-hyperpolarizabilities, and two-photon absorptions strengths of formaldehyde suggests that DFT may in some cases be a sufficiently reliable alternative to high-level theory, such as coupled-cluster (CC) theory, in modeling solvent shifts, whereas results obtained with the HF wave function deviate significantly from the CC results. Calculations carried out on water gives results that also are comparable with CC calculations in accuracy for ground-state and first-order properties. However, to obtain such accuracy an exchange-correlation functional capable of describing the diffuse Rydberg states must be chosen.  相似文献   

11.
12.
The two isoelectronic bipyridyl derivatives, [2,2'-bipyridyl]-3,3'-diamine and [2,2'-bipyridyl]-3,3'-diol, are experimentally known to undergo very different excited-state double-proton-transfer processes, which result in fluorescence quantum yields that differ by four orders of magnitude. Herein, density functional theory (DFT), time-dependent DFT (TDDFT), and complete active space self-consistent field (CASSCF) calculations are used to study the double-proton-transfer processes in the ground and first singlet pi-->pi* excited state. The quantum-chemistry calculations indicate 1) the existence of only one energy minimum in the ground electronic state corresponding to reactants (thus avoiding the possibility of a fast fluorescent relaxation process from the photoproducts region), 2) an endoergic process of the complete double proton transfer, and 3) the presence of a conical intersection in the excited intermediate region of [2,2'-bipyridyl]-3,3'-diamine. These facts explain the very low fluorescence quantum yield in [2,2'-bipyridyl]-3,3'-diamine compared to [2,2'-bipyridyl]-3,3'-diol.  相似文献   

13.
CHARMM force field parameter values for a class of oligothiophene derivatives have been derived with reference to density functional theory/B3LYP potential energy surfaces. The force field parametrization of these luminescent conjugated polyelectrolytes includes the electronic ground state as well as the strongly light absorbing first excited state. In conjunction with quantum chemical response theory calculations of transition state properties, a molecular dynamical model of the Stokes shift is obtained. The theoretical model is benchmarked against experimental data recorded at room temperature which refer to sodium salts of p-HTAA and p-FTAA with distilled water as a solvent. For p-HTAA the theoretically predicted Stokes shift of 112 nm is in good agreement with the experimental result of 124 nm, given the approximations about exciton localization that were introduced to obtain a force field for the excited state.  相似文献   

14.
15.
Open-shell singlet diradicals are difficult to model accurately within conventional Kohn-Sham (KS) density-functional theory (DFT). These methods are hampered by spin contamination because the KS determinant wave function is neither a pure spin state nor an eigenfunction of the S(2) operator. Here we present a theoretical foray for using single-reference closed-shell ground states to describe diradicals by fractional-spin DFT (FS-DFT). This approach allows direct, self-consistent calculation of electronic properties using the electron density corresponding to the proper spin eigenfunction. The resulting FS-DFT approach is benchmarked against diradical singlet-triplet gaps for atoms and small molecules. We have also applied FS-DFT to the singlet-triplet gaps of hydrocarbon polyacenes.  相似文献   

16.
An interaction energy decomposition analysis method based on the block-localized wavefunction (BLW-ED) approach is described. The first main feature of the BLW-ED method is that it combines concepts of valence bond and molecular orbital theories such that the intermediate and physically intuitive electron-localized states are variationally optimized by self-consistent field calculations. Furthermore, the block-localization scheme can be used both in wave function theory and in density functional theory, providing a useful tool to gain insights on intermolecular interactions that would otherwise be difficult to obtain using the delocalized Kohn-Sham DFT. These features allow broad applications of the BLW method to energy decomposition (BLW-ED) analysis for intermolecular interactions. In this perspective, we outline theoretical aspects of the BLW-ED method, and illustrate its applications in hydrogen-bonding and π-cation intermolecular interactions as well as metal-carbonyl complexes. Future prospects on the development of a multistate density functional theory (MSDFT) are presented, making use of block-localized electronic states as the basis configurations.  相似文献   

17.
A large set of electronic states of scandium dimer has been calculated using high-level theoretical methods such as quantum diffusion Monte Carlo (DMC), complete active space perturbation theory as implemented in GAMESS-US, coupled-cluster singles, doubles, and triples, and density functional theory (DFT). The 3 Sigma u and 5 Sigma u states are calculated to be close in energy in all cases, but whereas DFT predicts the 5 Sigma u state to be the ground state by 0.08 eV, DMC and CASPT2 calculations predict the 3 Sigma u to be more stable by 0.17 and 0.16 eV, respectively. The experimental data available are in agreement with the calculated frequencies and dissociation energies of both states, and therefore we conclude that the correct ground state of scandium dimer is the 3 Sigma u state, which breaks with the assumption of a 5 Sigma u ground state for scandium dimer, believed throughout the past decades.  相似文献   

18.
Precise knowledge of the excitation energies of the lowest excited states S(1) and S(2) of the carotenoids violaxanthin, lutein, and zeaxanthin is a prerequisite for a fundamental understanding of their role in light harvesting and photoprotection during photosynthesis. By means of density functional theory (DFT) and time-dependent DFT (TDDFT), the electronic and structural properties of the ground and first and second excited states are studied in detail. According to our calculations, all-s-cis-zeaxanthin and s-cis-lutein conformers possess lower total ground-state energies than the corresponding s-trans conformers. Thus, only s-cis isomers are probably physiologically relevant. Furthermore, the influence of geometric relaxation on the energies of the ground state and S(1) and S(2) states has been studied in detail. It is demonstrated that the energies of these states change significantly if the carotenoid adopts the equilibrium geometry of the S(1) state. Considering these energetic effects in the interpretation of S(1) excitation energies obtained from fluorescence and transient absorption spectroscopy shifts the S(1) excitation energies about 0.2 eV to higher energy above the excitation energy of the chlorophyll a.  相似文献   

19.
The structural and electronic properties of the fluorene-pyridine copolymer (FPy)(n), (n = 1-4) were investigated theoretically by means of quantum mechanical calculations based on density functional theory (DFT) and time-dependent DFT (TD-DFT) using the B3LYP functional. Geometry optimizations of these oligomers were performed for the ground state and the lowest excited state. It was found that (FPy)(n) is nonplanar in its ground state, whereas a more pronounced trend toward planarity is observed in the S(1) state. Absorption and fluorescence energies have been extrapolated to infinite chain length making use of their good linearity with respect to 1/n. An extrapolated value of 2.64 eV is obtained for vertical excitation energy. The S(1)<--S(0) electronic excitation is characterized as a highest occupied molecular orbital to lowest unoccupied molecular orbital transition and is dominating in terms of oscillator strength. Fluorescence energies and radiative lifetime were calculated as well. The obtained results indicate that the fluorescence energy and radiative lifetime of (FPy)(n) are 2.16 eV and 0.38 ns, respectively. The decrease of fluorescence energy and radiative lifetime with the increase in the chain length is discussed.  相似文献   

20.
1 INTRODUCTION Since the discovery of one-dimensional metallic behavior of tetrathiafulvalene (TTF) with tetracyano- quinodimethane (TCNQ)[1], organic charge-transfer (CT) complexes and CT salts have been intensively studied in search of electrically conducting and superconducting properties[2 ~ 6] which are most unusual for an organic material. The most intriguing property is that it is excellent metal with conducti- vity similar to that of metals at room temperature[7, 8]. In these…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号