首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The volume-averaged shear-induced drop-coalescence efficiency epsilonv is measured by in situ videomicroscopy of blends of poly(propylene glycol) and poly(ethylene glycol), emulsified with poly(ethyleneglycol-b-propyleneoxide-b-ethyleneglycol) block copolymer surfactant. Adsorption of copolymer to the immiscible blend interface is indicated by a reduction in the interfacial tension, measured by the drop retraction method. The effects of temperature, copolymer molecular weight, copolymer concentration, and capillary number Ca are explored. At small Ca, epsilonv is essentially independent of shear rate and drop size, and depends mainly on the solubility, diffusivity, and surface pressure of the surfactant, indicating that drop trajectories during flow are perturbed by surfactant Marangoni stresses that are controlled by the diffusion-limited sorption of surfactant. At larger Ca, epsilonv approaches zero. This arrest of coalescence is associated with the onset of slight deformation of the drops during their collision, and drainage of a film of continuous fluid between them. The effect of the surfactant, though significant, saturates even while the amount of surfactant adsorbed to the interface is quite small. Governing dimensionless parameters, associated material parameters and the behavior of more insoluble surfactants are discussed.  相似文献   

2.
The effect of bulk-soluble surfactants on the dynamics of a drop translating through a cylindrical tube under low-Reynolds-number conditions is investigated. Interfacial surfactant adsorption/desorption is modeled according to the Frumkin adsorption framework, and the bulk-insoluble surfactant limit is recovered as the rate of surfactant sorption becomes large compared to that of bulk diffusion. As the equilibrium surface coverage is increased, the mechanism by which drop mobility is reduced changes from uniform retardation at low surface coverage to the formation of a stagnant cap at high surface coverage. For large capillary numbers, the drop does not achieve a steady shape, and eventually it breaks up either through the formation of a penetrating viscous jet of suspending fluid, or by continuous elongation and pinch-off. Surfactants have a destabilizing effect on transient drop shapes by accelerating the formation and development of the penetrating viscous jet that leads to drop breakup. The critical conditions for drop breakup, as well as the mode of breakup, depend on the manner in which the strength of the flow (i.e., the capillary number) is increased.  相似文献   

3.
The effects of surfactants on the interfacial tension driven retraction of elongated drops were studied in a spinning drop tensiometer. Experiments were conducted on polypropylene glycol (PPG) drops suspended in polyethylene glycol (PEG), with Pluronic block copolymers as surfactants. Two unusual observations are reported here. In the first, initially-elongated drops generated at high rotational speed were allowed to retract by reducing the rotational speed. Pluronic-laden drops would not retract completely, but would instead maintain strongly nonspherical shapes indefinitely. We attribute such "nonretraction" to an interfacial yield stress induced by the Pluronic surfactant. In the second, drops being heated while spinning at a constant speed would elongate sharply at some temperature, and subsequently breakup. Such "autoextension" and breakup indicate complex nonmonotonic changes in interfacial tension with time during heating. We propose that autoextension occurs because at low temperature, interfacially-adsorbed surfactant is crystallized and hence trapped at the interface at a concentration far above equilibrium.  相似文献   

4.
A second-order drop deformation method for inferring interfacial tension between two immiscible polymers is proposed and shown to improve the accuracy of tension estimate appreciably. A small step-strain method, which uses a strong flow (capillary number >1) and short flow time approximately O(0.1s), is successfully developed to avoid complications caused by the surfactants for surfactant-laden drops. This method is demonstrated to give good tension estimates for a range of viscosity ratios and surface coverage.  相似文献   

5.
The effect of surfactants' type and concentration on the interfacial tension and contact angle in the presence of hydrophilic silica particles was investigated. Silica particles have been shown to have an antagonistic effect on interfacial tension and contact angle in the presence of both W/O and O/W surfactants. Silica particles, combined with W/O surfactant, have no effect on interfacial tension, which is only dictated by the surfactant concentration, while they strongly affect interfacial tension when combined with O/W surfactants. At low O/W surfactant, both particles and surfactant are adsorbed at the interface, modifying the interface structure. At higher concentration, interfacial tension is only dictated by the surfactant. By increasing the surfactant concentration, the contact angle that a drop of aqueous phase assumes on a glass substrate placed in oil media decreases or increases depending on whether the surfactant is of W/O or O/W type, respectively. This is due to the modification of the wettability of the glass by the oil or water induced by the surfactants. Regardless of the surfactant's type, the contact angle profile was dictated by both particles and surfactant at low surfactant concentration, whereas it is dictated by the surfactant only at high concentration.  相似文献   

6.
There is a close correlation between the interfacial activity and the adsorption of the surfactant at the interface, but the detailed molecular standard information was scarce. The interfacial activity of two traditional anionic surfactants sodium dodecyl benzene sulfonate (SDBS) and sodium oleate (OAS) were studied by experimental and computer simulation methods. With the spinning drop method and the suspension drop method, the interfacial tension of oil/aqueous surfactant systems was measured, and the influence of surfactant concentration and salinity on the interfacial tension was investigated. The dissipative particle dynamics (DPD) method was used to simulate the adsorption of SDBS and OAS at the oil/water interface. It was shown that it is beneficial to decrease interfacial tension if the hydrophobic chains of the surfactant and the oil have similar structure. The accession of inorganic salts causes surfactant molecules to form more compact and ordered arrangements and helps to decrease the interfacial tension. There is an osculation relation between interfacial density and interfacial activity. The interfacial density calculated by molecular simulation is an effective parameter to exhibit the interfacial activity.  相似文献   

7.
A systematic study of the interfacial activity of polymer-coated gold nanoparticles was performed with the use of a computer-controlled four-roll mill. The nanoparticle locality within the polymeric domains (bulk or interface) was controlled by means of a mixture of polymeric ligands grafted to the gold nanoparticle core. The bulk polymers were polybutadiene (PBd) and polydimethylsiloxane (PDMS). Monoterminated PDMS and PBd ligands were synthesized on the basis of the esterification of reactive groups (such as hydroxyl or amino groups) with lipoic acid anhydride. The formation of polymer-coated nanoparticles using these lipoic acid-functionalized polymers was confirmed via transmission electron microscopy (TEM), and their interfacial activity was manifested as a reduction of the interfacial tension and in the enhanced stability of thin films (as seen via the inhibition of coalescence). The nanoparticles showed an equal, if not superior, ability to reduce the interfacial tension when compared to previous studies on the effect of insoluble surfactants; however, these particles proved not to be as effective at inhibiting coalescence as their surfactant counterpart. We suggest that this effect may be caused by an increase in the attractive van der Waals forces created by the presence of metal-core nanoparticles. Experimental measurements using the four-roll mill allow us to explore the relationship between nanoparticle concentration at the interface and interfacial tension. In particular, we have found evidence that the interface concentration can be increased relative to the equilibrium value achieved by diffusion alone, and thus the interfacial tension can be systematically reduced if the interfacial area is increased temporarily via drop deformation or breakup followed by recoalescence.  相似文献   

8.
Interfacial tension of water–CO2 interface was measured by pendant drop method in the presence of a surfactant of various concentrations. The surfactants used were three surfynols which are non-ionic blanched hydrocarbon with different length of the alkyl side chain. Prior to the interfacial tension measurements, the solubility of the surfynols in CO2 were determined from cloud point method. The measured interfacial tensions indicated that an addition of small amount surfactant did reduce the interfacial tension. The interfacial activities of surfactants were evaluated from the slope of the interfacial tension reduction curve against the surfactant concentration and rationalized in terms of the molecular natures such as hydrophobic alkyl chain length.  相似文献   

9.
Droplet emulsification in microfluidic devices involves the constant formation of fresh interfaces between two immiscible fluids. When the multiphase system contains surfactant, dynamic mass transfer of the surfactant onto the interface results in a dynamic interfacial tension different from the static interfacial tension measured in an equilibrium state. In this work, we have systematically investigated the effects of surfactant concentration and type on the dynamic interfacial tension of two different liquid-liquid two phase systems [N-hexane/water-sodium dodecyl sulfate (SDS) and N-hexane/water-cetyltrimethylammonium bromide (CTAB)] rapidly producing relatively small droplets in coaxial microfluidic devices. Dynamic interfacial tension experiments using the pendent drop method and a tensiometer were conducted, and a semiempirical equation was developed to put into context the effects of surfactants and the experimental conditions on droplet formation and dynamic interfacial tension in dynamic microchannel flows. The results presented in this work provide a more in-depth understanding of the dynamic effects of surfactants on droplet formation and the precise controllable preparation of monodispersed droplets in microfluidic devices.  相似文献   

10.
Surfactants are routinely used to control the breakup of drops and jets in many applications such as inkjet printing, crop spraying, and DNA or protein microarraying. The breakup of surfactant-free drops and jets has been extensively studied. By contrast, little is known about the closely related problem of interface rupture when surfactants are present. Solutions of a nonionic surfactant, pentaethylene glycol monododecyl ether, or C12E5, in water and in 90 wt % glycerol/water are used to show the effects of surfactant and viscosity on the deformation and breakup dynamics of stretching liquid bridges. Equilibrium surface tensions for both solutions can be fitted with the Langmuir-Szyskowski equation. All experiments have been done at 24 degrees C. The critical micelle concentrations for C12E5 are 0.04 and 0.4 mM in water and the glycerol/water solution, respectively. With high-speed imaging, the dynamic shapes of bridges held captive between two rods of 3.15 mm diameter are captured and analyzed with a time resolution of 0.1-1 ms. The bridge lengths are 3.15 mm initially and about 5-7 mm at pinch-off. Breakup occurs after stretching for about 0.2-0.3 s, depending on the solution viscosity and the surfactant concentration. When the liquid bridges break up, the volume of the sessile drop left on the bottom rod is about 3 times larger than that of the pendant drop left on the top rod. This asymmetry is due to gravity and is influenced by the equilibrium surface tensions. Surfactant-containing low-viscosity water bridges are shown to break up faster than surfactant-free ones because of the effect of gravity. With or without surfactant, water bridges form satellite drops. Surfactant-containing high-viscosity glycerol/water bridges break up more slowly than surfactant-free ones because of strong viscous effects. Moreover, the shapes of the sessile drops close to breakup exhibit a "pear-like" tip; whether a satellite forms depends on the surface age of the bridge before stretching commences. These unexpected effects arising from the addition of surfactants are due to the capillary pressure reduction and Marangoni flows linked to dynamic surface tension.  相似文献   

11.
采用动态激光光散射及环境扫描电镜研究了羧甲基纤维素系列高分子表面活性剂与大庆原油形成超低界面张力的机理.结果表明,CMC系列高分子表面活性剂具有与低分子量表面活性剂相比拟的表/界面活性,其水溶液的表面张力可达2835mN/m,界面张力达到10-110mN/m.碱的加入可显著降低高分子表面活性剂与原油的界面张力,在适当条件下界面张力达到超低值(10-3mN/m),可望作为三次采油的驱油剂.等效烷烃模型研究表明,用碱与原油酸性组分的作用来解释碱能使界面张力下降至超低值的传统观点是不完善的,加入碱能使高分子表面活性剂胶束解缔,胶束数量增多,胶束粒径减小,单分子自由链增加,有利于高分子表面活性剂向界面迁移和排布,这是高分子表面活性剂和碱复配体系与原油界面张力下降至超低值的主要原因.  相似文献   

12.
The dynamics of adsorption, interfacial tension, and rheological properties of two phosphocholine-derived partially fluorinated surfactants FnHmPC, designed to compensate for the weak CO(2)-surfactant tail interactions, were determined at the pressurized CO(2)-H(2)O interface. The two surfactants differ only by the length of the hydrocarbon spacer (5 CH(2) in F8H5PC and 11 CH(2) in F8H11PC) located between the terminal perfluoroalkyl chain and the polar head. The length of this spacer was found to have a critical impact on the adsorption kinetics and elasticity of the interfacial surfactant film. F8H5PC is soluble in both water and CO(2) phases and presents several distinct successive interfacial behaviors when bulk water concentration (C(W)) increases and displays a nonclassical isotherm shape. The isotherms of F8H5PC are similar for the three CO(2) pressures investigated and comprise four regimes. In the first regime, at low C(W), the interfacial tension is controlled by the organization that occurs between H(2)O and CO(2). The second regime corresponds to the adsorption of the surfactant as a monolayer until the CO(2) phase is saturated with F8H5PC, resulting in a first inflection point. In this regime, F8H5PC molecules reach maximal compaction and display the highest apparent interfacial elasticity. In the third regime, a second inflection is observed that corresponds to the critical micelle concentration of the surfactant in water. At the highest concentrations (fourth regime), the interfacial films are purely viscous and highly flexible, suggesting the capacity for this surfactant to produce water-in-CO(2) microemulsion. In this regime, surfactant adsorption is very fast and equilibrium is reached in less than 100 s. The behavior of F8H11PC is drastically different: it forms micelles only in the water phase, resulting in a classical Gibbs interface. This surfactant decreases the interfacial tension down to 1 mN/m and forms a strongly elastic interface. As this surfactant forms a very cohesive interface, it should be suitable for formulating stable water-in-CO(2) emulsions. The finding that the length of the hydrocarbon spacer in partially fluorinated surfactants can drastically influence film properties at the CO(2)-H(2)O interface should help control the formation of microemulsions versus emulsions and help elaborate a rationale for the design of surfactants specifically adapted to pressurized CO(2).  相似文献   

13.
Experimental studies were conducted to explore the fundamental mechanisms of alkali to lower the interfacial tension of oil/heavy alkylbenzene sulfonates (HABS) system. Sodium hydroxide was used as the strong alkali chemical to investigate the interfacial tension (IFT) of oil/HABS system. The influences of salt and alkali on the interfacial activity were studied by the measurement of interfacial tension and partition coefficient. Moreover, the alkali/surfactant solutions were measured by dynamic laser scattering. The results showed that compared with the salt, the function of alkali to lower the interfacial tension and improve partition coefficient is more significant. The micelles formed by surfactants could be disaggregated because of adding alkali, so the size of micelles decreases and the number of mono‐surfactants increases, then more surfactant molecules move to the interface of oil/surfactant system and the adsorption of surfactants at oil‐water interfaces increases, which can lead to the decrease of IFT.  相似文献   

14.
The influences of four cationic surfactants hexadecyl glycidyl ether ammonium chloride and four zwitterionic surfactants hexadecyl glycidyl ether glycine Betaine solutions on contact angle of crude oil on a quartz surface were investigated using a captive drop method. The effects of surfactant type, structure, and concentration on contact angle were expounded. From obtained results it appears that the adsorbed surfactant at oil–water interface reduces the interfacial tension and the adsorption at quartz–water interface improves interfacial free energy, which results in reducing the stable value of contact angle and weakening dynamic behavior. At high concentration, the zwitterionic surfactant with branched-chain may form semi-micelle at quartz surface. As a result, the stable value of contact angle passes through a sharp minimum with the increasing concentration.  相似文献   

15.
Gemini阴离子表面活性剂水溶液的界面活性   总被引:7,自引:0,他引:7  
Gemini阴离子表面活性剂水溶液的界面活性;Gemini阴离子表面活性剂;表面张力;CMC;C20;界面张力  相似文献   

16.
The oscillating drop/bubble technique is increasingly popular for measuring the interfacial dilatational properties of surfactant/polymer-laden fluid/fluid interfaces. A caveat of this technique, however, is that viscous forces are important at higher oscillation frequencies or fluid viscosities; these can affect determination of the interfacial tension. Here, we experimentally quantify the effect of viscous forces on the interfacial-tension measurement by oscillating 100 and 200 cSt poly(dimethylsiloxane) (PDMS) droplets in water at small amplitudes and frequencies ranging between 0.01 and 1 Hz. Due to viscous forces, the measured interfacial tension oscillates sinusoidally with the same frequency as the oscillation of the drop volume. The tension oscillation precedes that of the drop volume, and the amplitude varies linearly with Capillary number, Ca=DeltamuomegaDeltaV/gammaa(2), where Deltamu=mu(D)-mu is the difference between the bulk Newtonian viscosities of the drop and surrounding continuous fluid, omega is the oscillation frequency of the drop, DeltaV is the amplitude of volume oscillation, gamma is the equilibrium interfacial tension between the PDMS drop and water, and a is the radius of the capillary. A simplified model of a freely suspended spherical oscillating-drop well explains these observations. Viscous forces distort the drop shape at Ca>0.002, although this criterion is apparatus dependent.  相似文献   

17.
Drop retraction methods are popular means of measuring the interfacial tension between immiscible polymers. Experiments show that two different drop retraction methods, imbedded fiber retraction (IFR) and deformed drop retraction (DDR), give inconsistent results when a surfactant is present on the surface of the drop. These inconsistencies are deemed to be due to dilution of the surfactant and due to gradients in interfacial concentration of surfactant along the drop surface. This physical picture is quantified for the simple case of a Newtonian drop in a Newtonian matrix, with an insoluble, nondiffusive surfactant at the interface. The drop is deformed in computational fluid dynamics simulations by shearing the matrix, and then allowed to retract. Dilution and interfacial tension gradients effects are found to be especially large at the early stages of retraction, making IFR unsuitable for measuring the interfacial tension of surfactant-laden interfaces. The effects of surfactant dilution and gradients are found to persist even at late stages of retraction, causing the DDR method to underestimate the equilibrium interfacial tension significantly. The largest underestimates occur when the drop viscosity is lower than the matrix viscosity.  相似文献   

18.
Dynamic interfacial tension values obtained by drop volume tensiometry will be affected under certain experimental conditions by the formation of a neck between the drop and the capillary tip. This phenomenon must be accounted for to obtain accurate values of interfacial tension. In this work, neck formation for a water–mineral oil system is studied under conditions where hydrodynamic effects can be neglected. A model originally developed for the determination of the surface tension of a suspended drop is modified for application to dynamic interfacial tensions of surfactant-containing liquids. The model relates apparent values of interfacial tension calculated from drops possessing necks to actual values. Experiments with Span 80 (sorbitan monooleate) and sodium dodecyl sulfate (SDS) surfactants in a mineral oil–water system are used to test the validity of the developed model. For the small tip diameter used, good agreement is obtained for Span 80 up to the critical micelle concentration, and for low concentrations of SDS, when the surfactant adsorption is diffusion-limited. In both cases, the neck diameter of the growing drop can be considered constant over the range of dynamic interfacial tensions tested.  相似文献   

19.
To clarify the effect of the surfactant head group on the emulsification process, dilute dodecane in water emulsions were prepared in a small flow-through cell with three surfactants which had the same hydrocarbon tail length but different head groups. The different surfactants types were (a) a nonionic, hexa(ethyleneglycol) mono n-dodecyl ether (C12E6), (b) an anionic, sodium dodecyl sulfate (SDS), and (c) a cationic, n-dodecyl pyridinium chloride (DPC), and the emulsions were prepared under the same conditions. From dynamic light scattering measurements, it was shown that the mean steady state droplet size of the emulsions (obtained after 20 min dispersion) could be related to the interfacial tension at concentrations in the region of the cmc. This result was in agreement with laminar and turbulent viscous flow theory. However, the particle size versus surface tension data for the different surfactant systems did not fall on a single line. This behavior suggested that the surfactant played a secondary role in defining the droplet size (in addition to reducing the interfacial tension) possibly through diffusion and relaxation, during deformation of the interface. In addition, it was found that the values of the equilibrium "surfactant packing densities" of the different surfactants at the oil/water interface were almost equal near the cmc, but the mean droplet size and the interfacial tension at the cmc decreased following the order DPC>SDS>C12E6 .  相似文献   

20.
正负离子混合表面活性剂双水相界面张力的研究   总被引:3,自引:0,他引:3  
阮科  张翎  汤皎宁  肖进新 《物理化学学报》2006,22(12):1451-1455
用旋转滴法测定了正负离子混合表面活性剂形成的双水相界面张力, 研究了双水相界面张力与表面活性剂的分子结构、正负离子表面活性剂的摩尔比、总浓度、外加无机盐及温度的关系. 结果表明, 双水相界面张力在一定正、负离子表面活性剂的摩尔比时属于超低界面张力范围. 观察到三种界面张力曲线类型, 第一类为摩尔比1:1 的两边的两条曲线, 界面张力随过剩表面活性剂组分的比例增加而降低; 第二类为一条跨过摩尔比1:1的马鞍型曲线; 第三类为位于摩尔比1:1的一边的一条马鞍型曲线. 界面张力曲线的类型主要取决于表面活性剂的分子结构, 包括亲水基类型、疏水链长度及对称性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号