首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study crystallization of paramagnetic beads in a magnetic field gradient generated by one-dimensional nanomagnets. The pressure in such a system depends on both the magnetic forces and the hydrodynamic flow, and we estimate the flow threshold for disassembling the crystal near the magnetic potential barrier. A number of different defects have been observed which fluctuate in shape or propagate along the crystal, and it is found that the defect density increases away from the nanomagnet. We also study the melting of the crystal/fluid system after removal of the nanomagnet and demonstrate that the bond-oriental order parameter decreases with time. The nanomagnet can be moved in a controlled manner by a weak external magnetic field, and at sufficiently large driving velocities we observe self-healing crack formation characterized by a roughening of the lattice as well as gap formation. Finally, when confined between two oscillating nanomagnets, the colloidal crystal is shown to break up and form dipolar chains above a certain oscillation frequency.  相似文献   

2.
 In this paper we summarise the effects induced by electric and magnetic fields on the mobility and shape of polymer gels containing a complex fluid as a swelling agent. Magnetic-field-sensitive gel beads and monolith gels have been prepared by introducing magnetic particles of colloidal size into chemically cross-linked poly(N-isopropylacrylamide) and poly(vinyl alcohol) hydrogels. The influence of uniform and nonuniform fields has been studied. In uniform magnetic fields the gel beads form straight chainlike structures, whereas in nonhomogeneous fields the beads aggregates due to the magnetophoretic force directed to the highest field intensity. The ability of magnetic-field-sensitive gels to undergo quick, controllable changes in shape can be used to mimic muscular contraction. Received: 26 July 1999/Accepted: 27 August 1999  相似文献   

3.
This communication demonstrates the assembly of superparaferromagnetic colloidal nanoparticles into one-dimensional (1D) nanochain structures using an external magnetic field at room temperature, which were surrounded and linked by the amorphous carbon on the surface of nanoparticles. It is suggested that these nanochains have a fixed distance between adjacent colloidal particles and can diffract purple visible light (404 nm) under the induction of an external magnetic field.  相似文献   

4.
A 2D close-packed array of thermosensitive microgel beads was prepared by the double-template polymerization method. First, a 2D colloidal crystal of silica beads with 10 microm diameter was obtained by the solvent evaporation method. This monolayer of colloidal crystals can serve as the first template for the preparation of macroporous polystyrene. The macroporous polystyrene trapping the crystalline order can be used as a negative template for fabricating gel beads arrays. A functional surface using thermosensitive poly(N-isopropylacrylamide) gel beads array was fabricated by the double-template polymerization method.  相似文献   

5.
We demonstrate a novel method for compressing and expanding microscopic one-dimensional monolayers consisting of a finite number of aligned magnetic dipoles using a pair of microscopic magnetic barriers. By measuring the interaction between the beads and the barriers, we are able to determine the pressure of the dipolar monolayers. Our sensor can measure one-dimensional pressure in the femto and piconewton regime and is used to probe both homogeneous and mixed monolayers consisting of magnetic beads with diameters 1.0 microm and 2.8 microm. The larger beads appear to be well-described by a formalism taking into account magnetic dipolar interactions, whereas for smaller beads, such a simple picture does not hold. Upon compressing the monolayer above a certain density, it forms a bilayer. This process is governed by steric interactions or dipolar interactions, depending on the applied magnetic field. We also found odd-even effects, where the number of beads in the monolayer determines the initial structure of the bilayer.  相似文献   

6.
We have investigated the aggregate structures of a colloidal dispersion composed of ferromagnetic disk-like particles with a magnetic moment normal to the particle axis at the particle center, by means of 3D Monte Carlo simulations. Such disk-like particles have been modeled as a circular disk-like particle with the side section shape of spherocylinder. We have attempted to clarify the influences of the magnetic field strength, magnetic interactions between particles and volumetric fraction of particles. In order to discuss quantitatively the aggregate structures of clusters, we have focused on the radial distribution and orientational pair correlation functions, etc. For no applied magnetic field cases, long column-like clusters come to be formed with increasing magnetic particle–particle interactions. The internal structures of these clusters clearly show that the particles incline in a certain direction and their magnetic moments alternate in direction between the neighboring particles in the clusters. For applied magnetic field cases, the magnetic moment of each particle inclines in the magnetic field direction and therefore the column-like clusters are not formed straightforwardly. If the magnetic field is much stronger than magnetic particle–particle interactions, the particles do not have a tendency to form the clusters. As the influence of magnetic particle–particle interactions is significantly strong, thick chain-like clusters or column-like clusters or brick-wall-like clusters come to be formed along the magnetic field direction.  相似文献   

7.
Mikkelsen C  Bruus H 《Lab on a chip》2005,5(11):1293-1297
We study theoretically the capturing of paramagnetic beads by a magnetic field gradient in a microfluidic channel treating the beads as a continuum. Bead motion is affected by both fluidic and magnetic forces. The transfer of momentum from beads to the fluid creates an effective bead-bead interaction that greatly aids capturing. We demonstrate that for a given inlet flow speed a critical density of beads exists above which complete capturing takes place.  相似文献   

8.
Tanaka K  Imagawa H 《Talanta》2005,68(2):437-441
We developed new ELISA techniques in sequential injection analysis (SIA) mode using microreactors with content of a few microliters. We immobilized antibodies on magnetic beads 1.0 μm in diameter, injected the beads into microreactors and applied rotating magnetic fields of several hundred gauss. Magnetic beads, suspended in liquid in density of approximately 109-1010 particles per millilitre, form a large number of thin rod clusters, whose length-wise axes are oriented in parallel with the magnetic field. We rotate the Nd magnets below the center of the microreactor by a tiny motor at about 2000-5000 rpm. These rotating clusters remarkably accelerate the binding rate of the antibodies with antigens in the liquid. The beads are trapped around the center of the rotating magnetic field even in the flowing liquid. This newly found phenomenon enables easy bead handling in microreactors. Modification of reactor walls with selected blocking reagents was essential, because protein-coated beads often stick to the wall surface and cannot move freely. Washing steps were also shortened.  相似文献   

9.
We demonstrate a magnetic microsystem capable of detecting nucleic acids via the size difference between bare magnetic beads and bead compounds. The bead compounds are formed through linking nonmagnetic beads and magnetic beads by the target nucleic acids. The system comprises a tunnel magneto-resistive (TMR) sensor, a trapping well, and a bead-concentrator. The TMR sensor detects the stray field of magnetic beads inside the trapping well, while the sensor output depends on the number of beads. The size of the bead compounds is larger than that of bare magnetic beads, and fewer magnetic beads are required to fill the trapping well. The bead-concentrator, in turn, is capable of filling the trap in a controlled fashion and so to shorten the assay time. The bead-concentrator includes conducting loops surrounding the trapping well and a conducting line underneath. The central conducting line serves to attract magnetic beads in the trapping well and provides a magnetic field to magnetize them so to make them detectable by the TMR sensor. This system excels by its simplicity in that the DNA is incubated with magnetic and nonmagnetic beads, and the solution is then applied to the chip and analyzed in a single step. In current experiments, a signal-to-noise ratio of 40.3 dB was obtained for a solution containing 20.8 nM of DNA. The sensitivity and applicability of this method can be controlled by the size or concentration of the nonmagnetic bead, or by the dimension of the trapping well.
If biological targets are present, they link magnetic beads and fluorescent beads. This results in less magnetic beads to be on the surface of magnetic sensor, causing a smaller signal, thus biological targets are detected.  相似文献   

10.
This paper describes a strategy that combines physical templating and capillary forces to assemble monodispersed spherical colloids into uniform aggregates with well-controlled sizes, shapes, and structures. When an aqueous dispersion of colloidal particles was allowed to dewet from a solid surface that had been patterned with appropriate relief structures, the particles were trapped by the recessed regions and assembled into aggregates whose structures were determined by the geometric confinement provided by the templates. We have demonstrated the capability and feasibility of this approach by assembling polystyrene beads and silica colloids (> or =150 nm in diameter) into complex aggregates that include polygonal or polyhedral clusters, linear or zigzag chains, and circular rings. We have also been able to generate hybrid aggregates in the shape of HF or H2O molecules that are composed of polymer beads having different diameters, polymer beads labeled with different organic dyes, and a combination of polymeric and inorganic beads. These colloidal aggregates can serve as a useful model system to investigate the hydrodynamic and optical scattering properties of colloidal particles having nonspherical morphologies. They should also find use as the building blocks to generate hierarchically self-assembled systems that may exhibit interesting properties highly valuable to areas ranging from photonics to condensed matter physics.  相似文献   

11.
Magnetic calcium alginate yeast beads, made by incorporation of magnetite or colloidal magnetic liquid, Ferrofluidℳ, exhibited catalytic behavior similar to that of their nonmagnetic counterparts. The magnetic immobilized preparations’ shortterm performance, long-term operational stability, and capacity forin situ activation were unaffected by the inclusion of magnetic material. The magnetic quality of the alginate beads provides manipulatory advantages.  相似文献   

12.
Interparticle magnetic dipole force has been found to drive the formation of dynamic superparamagnetic colloidal particle chains that can lead to the creation of photonic nanostructures with rapidly and reversibly tunable structural colors in the visible and near-infrared spectrum. Although most studies on magnetic assembly utilize simple permanent magnets or electromagnets, magnetic fields, in principle, can be more complex, allowing the localized modulation of assembly and subsequent creation of complex superstructures. To explore the potential applications of a magnetically tunable photonic system, we study the assembly of magnetic colloidal particles in the complex magnetic field produced by a nonideal linear Halbach array. We demonstrate that a horizontal magnetic field sandwiched between two vertical fields would allow one to change the orientation of the particle chains, producing a high contrast in color patterns. A phase transition of Fe(3)O(4)@SiO(2) particles from linear particle chains to three-dimensional crystals is found to be determined by the interplay of the magnetic dipole force and packing force, as well as the strong electrostatic force. While a color pattern with tunable structures and diffractions can be instantly created when the particles are assembled in the form of linear chains in the regions with vertical fields, the large field gradient in the horizontal orientation may destabilize the chain structures and produces a pattern of 3D crystals that compliments that of initial chain assemblies. Our study not only demonstrates the great potential of magnetically responsive photonic structures in the visual graphic applications such as signage and security documents but also points out the potential challenge in pattern stability when the particle assemblies are subjected to complex magnetic fields that often involve large field gradients.  相似文献   

13.
Manipulation of the self‐assembly of magnetic colloidal particles by an externally applied magnetic field paves a way toward developing novel stimuli responsive photonic structures. Using microradian X‐ray scattering technique we have investigated the different crystal structures exhibited by self‐assembly of core–shell magnetite/silica nanoparticles. An external magnetic field was employed to tune the colloidal crystallization. We find that the equilibrium structure in absence of the field is random hexagonal close‐packed (RHCP) one. External field drives the self‐assembly toward a body‐centered tetragonal (BCT) structure. Our findings are in good agreement with simulation results on the assembly of these particles.  相似文献   

14.
We have analyzed the orientational distributions and rheological properties of a nondilute colloidal dispersion composed of ferromagnetic spherocylinder particles subjected to a simple shear flow. In order to understand the effects of the magnetic interactions between the particles, we have applied the mean-field theory to a nondilute colloidal dispersion for the two typical external magnetic field directions, that is, the direction parallel to the shear flow and the direction parallel to the angular velocity vector of the shear flow. The main results are summarized as follows. The particle-particle interactions suppress the Brownian motion of the particles and, therefore, make the particles incline toward the same direction. For the magnetic direction parallel to the shear flow, the influence of the particle-particle interactions makes the peak of the orientational distribution sharper and higher. The viscosity generally increases as the interactions between particles become stronger in the case where the effects of the shear flow and magnetic field are relatively small. For the magnetic direction parallel to the angular velocity vector of the shear flow, the influence of the particle-particle interactions on the orientational distribution appears significantly, when the influences of the shear flow and magnetic field are not so strong that the particles can be aligned sufficiently to form stable chainlike clusters in a certain direction.  相似文献   

15.
Traveling wave magnetophoresis for high resolution chip based separations   总被引:1,自引:0,他引:1  
Yellen BB  Erb RM  Son HS  Hewlin R  Shang H  Lee GU 《Lab on a chip》2007,7(12):1681-1688
A new mode of magnetophoresis is described that is capable of separating micron-sized superparamagnetic beads from complex mixtures with high sensitivity to their size and magnetic moment. This separation technique employs a translating periodic potential energy landscape to transport magnetic beads horizontally across a substrate. The potential energy landscape is created by superimposing an external, rotating magnetic field on top of the local fixed magnetic field distribution near a periodic arrangement of micro-magnets. At low driving frequencies of the external field rotation, the beads become locked into the potential energy landscape and move at the same velocity as the traveling magnetic field wave. At frequencies above a critical threshold, defined by the bead's hydrodynamic drag and magnetic moment, the motion of a specific population of magnetic beads becomes uncoupled from the potential energy landscape and its magnetophoretic mobility is dramatically reduced. By exploiting this frequency dependence, highly efficient separation of magnetic beads has been achieved, based on fractional differences in bead diameter and/or their specific attachment to two microorganisms, i.e., B. globigii and S. cerevisiae.  相似文献   

16.
A substrate of thin micromagnets covered by a template of microwells is used to direct the assembly of superparamagnetic colloidal beads into two-dimensional arrays. It is confirmed that the magnetization of the micromagnets can direct beads to programmed locations on the substrate with assistance of externally applied magnetic fields. Empirical investigations on this topic were guided by mathematical models with the intent to elucidate the conditions that promote a single bead to be assembled in the desired microwells. To demonstrate that this technique is programmable, heterogeneous arrays of colored beads are produced.  相似文献   

17.
A rather simple but yet effective way to self-assemble polystyrene (PS) beads in gradient colloidal crystal topography is proposed. The PS bead concentration, solvent, and substrate have a big effect on the colloidal crystal topography. Whether the gradient-shaped crystals can form or not depends on the Bond number [Bo; the ratio of gravitational potential energy (G) to adhesive energy (E(a)), or gravitational to capillary forces]. When Bo < 1, that is, the capillary force dominates over the gravitational force, the liquid meniscus is stable. The gradient-shaped crystals can form. Otherwise, PS beads form a uniform multilayer structure.  相似文献   

18.
We report the formation of a new class of supported membranes consisting of a fluid phospholipid bilayer coupled directly to a broadly tunable colloidal crystal with a well-defined photonic band gap. For nanoscale colloidal crystals exhibiting a band gap at the optical frequencies, substrate-induced vesicle fusion gives rise to a surface bilayer riding onto the crystal surface. The bilayer is two-dimensionally continuous, spanning multiple beads with lateral mobilities which reflect the coupling between the bilayer topography and the curvature of the supporting colloidal surface. In contrast, the spreading of vesicles on micrometer scale colloidal crystals results in the formation of bilayers wrapping individual colloidal beads. We show that simple UV photolithography of colloidal crystals produces binary patterns of crystal wettabilities, photonic stopbands, and corresponding patterns of lipid mono- and bilayer morphologies. We envisage that these approaches will be exploitable for the development of optical transduction assays and microarrays for many membrane-mediated processes, including transport and receptor-ligand interactions.  相似文献   

19.
Suspended magnetic beads are exposed to an external homogeneous magnetic field which rotates around the axis perpendicular to the field direction. Because of dipolar interactions, magnetic beads assemble in highly ordered two-dimensional hexagonal arrays perpendicular to the rotation axis. By continuous provision of the particle concentration, the growth modes of two-dimensional particle clusters and monolayers are observed. The structure of the resulting assembled objects is analyzed for different field frequencies and particle concentrations. We identify dynamic processes which enhance stability and reduce lattice distortions and, thus, allow for the application of these particle agglomerations as dynamic components in lab-on-a-chip technologies.  相似文献   

20.
Implementing DNA and protein microarrays into lab-on-a-chip systems can be problematic since these are sensitive to heat and strong chemicals. Here, we describe the functionalization of a microchannel with two types of magnetic beads using hydrodynamic focusing combined with a passive magnetic separator with arrays of soft magnetic elements. The soft magnetic elements placed on both sides of the channel are magnetized by a relatively weak applied external magnetic field (21 mT) and provide magnetic field gradients attracting magnetic beads. Flows with two differently functionalized magnetic beads and a separating barrier flow are introduced simultaneously at the two channel sides and the centre of the microfluidic channel, respectively. On-chip experiments with fluorescence labeled beads demonstrate that the two types of beads are captured at each of the channel sidewalls. On-chip hybridization experiments show that the microfluidic systems can be functionalized with two sets of beads carrying different probes that selectively recognize a single base pair mismatch in target DNA. By switching the places of the two types of beads it is shown that the microsystem can be cleaned and functionalized repeatedly with different beads with no cross-talk between experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号