首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Degradation of heavy pyrolytic oil obtained from a commercial rotary kiln pyrolysis plant for municipal plastic waste was conducted in batch and continuous reaction systems. The experiment was conducted by temperature programming with a 10 °C/min heating rate up to 450 °C and then maintained for a specific time at 450 °C. The product oil was sampled at different degradation temperatures with a specific interval of elapsed time of reaction. In this study, the characteristics of product oil obtained in both batch and continuous reaction systems were compared, according to degradation temperature and elapsed time at 450 °C. Raw pyrolytic oil showed a wide boiling point distribution from around 10 carbon number to about 35 and a high heating value, relative to of those of commercial oils (gasoline, kerosene, and diesel). In the two reaction systems, the characteristics of product oils were influenced by degradation temperature and elapsed time. Moreover, heavy hydrocarbons showed greater cracking at high degradation temperature and long elapsed time into light hydrocarbons as gasoline components range. Also, the continuous reaction system showed different characteristics of product oil, compared with those of the batch reaction system, such as the cumulative amount distribution, production rate, and carbon number distribution of the product oil, as a function of degradation temperature and elapsed time.  相似文献   

2.
In this study, the conversion of hazardous wastes into liquid fuels was investigated. The pyrolysis of bilge water oil and oil sludge from ships, scrap tires and their blends was carried out at 400 and 500 °C in absence and presence of catalyst. A commercial fluid catalytic cracking catalyst and Red Mud were used as catalyst. Pyrolysis products were separated as gas, oil and char. The pyrolytic oils were characterized by using gas chromatography-mass selective detector (GC-MSD) and 1H nuclear magnetic resonance (1H-NMR). The effect of temperature and catalyst on the product distribution and the composition of oil from pyrolysis were investigated. Co-pyrolysis of scrap tire with oily wastes from ships produced oil that could be used as fuel, while its pyrolysis alone produced oil that could be used as a chemical feedstock. The results obtained in this study showed that co-pyrolysis of oily wastes with scrap tires could be an environmentally friendly way for the transformation of hazardous wastes into valuable products such as chemicals or fuels.  相似文献   

3.
The pyrolysis of linear low density polyethylene (LLDPE) by used fluid catalytic cracking (FCC) catalyst was studied in a stirred reactor to reach the appropriate transportation hydrocarbons. In this work, the effect of process parameters such as degradation temperature, catalyst/polymer ratio (%), carrier gas type and stirring rate on the condensed yield, product composition and residence time were considered. Product evaluation was performed by GC analyzer and paraffin, naphthene, olefin and aromatic plus carbon number and average molecular weight of the products were measured under different process parameters.Temperature and catalyst as the basic parameters show remarkable effect on the LLDPE cracking. The maximum transportation condensate yield reaches at 450 °C and 20% catalyst respectively although increase of temperature and catalyst content, decrease the residence time patently. Based on the results, molecular weight and reactivity of the carrier gas as mass transfer factor also play a key role in the process. A decrease in molecular weight of the carrier gas led to increase the condensate yield and decrease the residence time. Meanwhile increasing of the carrier gas reactivity could increase the condensate hydrocarbons. Hydrogen as reactive and lower molecular weight carrier gas increases the condensed yield patently. The study showed that stirring rate as a function of heat transfer and temperature homogenizer also affects on the condensate hydrocarbons positively. The maximum condensate yield was found to occur at 50 rpm although the residence time decreases with stirring rate increasing.  相似文献   

4.
The effects of temperature and Fe loading over multi wall carbon nano tube catalysts in thermal catalytic cracking of naphtha to produce light olefins have been studied in this paper. The CCD method was utilized and a set of experiments were designed and carried out. The temperature and loading varied from 572 to 628 °C and 0.34 to 11.66 wt.% Fe, respectively. In order to determine the effects of the variation of the operating conditions on the yield distributions, a set of statistical models were utilized and the maximum point of the yield of each product was determined. The maximum yield of ethylene (18.84 wt.% of product) and propylene (12.85 wt.% of product) was obtained at 628 °C and 10.6 wt.% loading of Fe over CNTs. Finally, thermal cracking of naphtha was carried out and was compared with thermal catalytic cracking of naphtha. As a result, at 620 °C, the yield of ethylene and propylene in thermal-catalytic cracking was 6.3% and 4.7%, respectively, more than those in thermal cracking of naphtha.  相似文献   

5.
In this paper, an ultrastable Y-type (USY) zeolite was investigated with two-staged pyrolysis–catalysis of waste tyres. Waste tyres were pyrolysed in a fixed bed reactor and the evolved pyrolysis gases were passed through a secondary catalytic reactor. The main objective of this paper was to obtain high concentration of certain aromatic hydrocarbons suitable to be used as a chemical feedstock rather than a liquid fuel, and the influence of catalyst/tyre ratio on the product yield and composition of derived oils. The light fraction (boiling point < 220 °C) was distilled from the derived oil prior to be analyzed with gas chromatography/mass spectrometry (GC/MS). It showed that the increase of catalyst/tyre ratio resulted in high yield of gas at the expense of the oil yield. The high catalyst/tyre ratio favored to increase the concentration of light fraction (<220 °C) in oil. Increasing the catalyst/tyre ratio resulted in significant changed in the concentration of benzene, toluene, xylenes and the alkyl aromatic compounds. For benzene and toluene, the highest concentration was obtained at the catalyst/tyre ratio of 0.5. The concentration of xylenes increased with the increasing of catalyst/tyre ratio.  相似文献   

6.
The steam cracking (copyrolysis) of naphtha with oils/waxes from thermal decomposition of polyalkenes has been investigated as a process for chemical recycling of plastic wastes. High-density polyethylene (HDPE), two-component mixture (LDPE/PP) and three-component mixture (HDPE/LDPE/PP) were thermally decomposed in a batch reactor at 450 °C, thus forming oil/wax products. Subsequently, these products were dissolved in heavy naphtha in the amount of 10 mass% to obtain steam cracking feedstock. The composition of gaseous and liquid products during copyrolysis was studied at 780 °C and 820 °C in dependence on residence time from 0.08 s to 0.51 s. The obtained results were compared with the product composition from steam cracking of naphtha at identical experimental conditions. The decomposition of polyalkene oils/waxes during copyrolysis was confirmed on the basis of analysis of liquid products. It was shown that more ethene and propene was formed during copyrolysis of oil/wax from HDPE in comparison with naphtha and both mixtures and so oil/wax from HDPE seems to be favourable component of steam cracking feedstock. There were slight differences between product compositions from copyrolysis of two- and three-component mixtures. The presence of HDPE in three-component mixture supported formation of gas and ethene. The presence of oil/wax form PP enhanced formation of propene and branched alkenes. For both type of polyalkenic mixtures the yields of desired low molecular alkenes and alkanes were higher or approximately the same as from naphtha. The results confirm suitability of oils/waxes from polyalkenes as a co-feed for steam cracking units.  相似文献   

7.
Products derived from bamboo EMAL pyrolysis were investigated by means of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and the effects of temperature and catalyst (sodium chloride, permutite) on the yields of pyrolysis products were probed in detail. The results showed that thermal degradation of EMAL mainly occurred at the temperature range from 250 °C to 600 °C, and both the temperature and catalyst in EMAL pyrolysis were important factors in the formation or inhibition of products. The products that derived from p-hydroxyphenylpropanoid, guaiacylpropanoid, and syringylpropanoid of lignin units by pyrolytic reactions were classified as the heterocycle (2,3-dihydrobenzofuran), phenols, a small quantity of acetic acid and furans, etc. With an increase of pyrolysis temperature, the amount fraction of 2,3-dihydrobenzofuran (DHBF) decreased from 66.26% to 19.15%. Moreover, when the additive catalyst increased from 5% to 20%, permutite catalyst improved in the formation of DHBF from19.15% to 24.19%, whereas NaCl catalyst was effective to inhibit the production of DHBF from 19.15% to 13.08%. Permutite promoted the production of coke from EMAL pyrolysis, conversely, NaCl had an inhibiting effect on the generation of coke. And NaCl catalyst had a significant catalytic effect on raising or reducing of the product yields in bamboo lignin pyrolysis.  相似文献   

8.
A continuous flow reactor was operated at 420 °C and feed rate of 0–1.5 kg h−1 for catalytic degradation of polyethylene (PE) over SA-1 silica–alumina in order to investigate the effect of catalyst on the reaction rate and the quantity and quality of degradation products. SA-1 was either mixed with the PE inside reactor or placed in a catalyst cage, the efficiency being slightly higher in the first case. The catalyst did not have a significant effect on the reaction rates but the volatile products clearly had lower molecular weights. More gases were produced on SA-1 compared to thermal degradation, containing higher amounts of C4 and less amounts of C2 compounds.  相似文献   

9.
The pyrolysis of cycloolefin-copolymers (COC) in a fluidized-bed reactor was studied under various parameters like pyrolysis temperature, fluidizing gas or residence time. It was proven to reduce the undesired tar fraction to a minimum of around 10 wt.% and to obtain up to 44 wt.% valuable gases and 45 wt.% aromatic light oils with a reactor temperature of 700 °C.Furthermore, the mechanism of the pyrolytic degradation has been analyzed to determine if the comonomer 2-norbornene can be obtained by pyrolysis. In all experiments, only traces of around 0.05 wt.% were detected. It was learned that 2-norbornene is not stable enough to resist drastic pyrolysis conditions; rather it undergoes a Retro–Diels–Alder reaction to form ethene and cyclopentadiene.  相似文献   

10.
A commercial FCC catalyst based on a zeolite active phase has been used in the catalytic pyrolysis of HDPE. The experimental runs have been carried out in a conical spouted bed reactor provided with a feeding system for continuous operation. Different treatments have been applied to the catalyst to improve its behaviour. This paper deals with the optimization of catalyst steaming and pyrolysis temperature in order to maximize the production of diesel-oil fraction. The performance of the fresh catalyst has been firstly studied at 500 °C. This catalyst gives way to 52 wt% gas yield, 35 wt% light liquid fraction and a low yield of C10+ fraction (13 wt%). After mild steaming (5 h at 760 °C) the results show a significant improvement in product distribution. Thus, gas yield decreases to 22 wt%, the yield of light liquid is similar to that of the fresh one (38 wt%), whereas the yield of the desired C10+ fraction increases to 38 wt%. Nevertheless, the best results have been obtained when a severe steaming is applied to the catalyst (8 h at 816 °C) and pyrolysis temperature is reduced to 475 °C. There is a significant reduction in the gaseous fraction (8 wt%). The light liquid fraction has also been reduced to 22 wt%, but the yield of diesel fraction increases to 69 wt%. Moreover, the deactivation of the catalyst has also been studied under the optimum conditions.  相似文献   

11.
The cellulose without and with catalyst (CuCl2, AlCl3) was subjected to pyrolysis at temperatures from 350 to 500 °C with different heating rate (10 °C/min, 100 °C/s) to produce bio-oil and selected chemicals with high yield. The pyrolytic oil yield was in the range of 37–84 wt% depending on the temperature, the heating rate and the amount of metal chloride. The non-catalytic fast pyrolysis at 500 °C gives the highest yield of bio-oil. The mixing cellulose with both metal chlorides results with a significant decrease of the liquid product. The non-catalytic pyrolysis of cellulose gives the highest mass yield of levoglucosan (up to 11.69 wt%). The great influence of metal chloride amount on the distribution of bio-oil components was observed. The copper(II) chloride and aluminum chloride addition to cellulose clearly promotes the formation of levoglucosenone (up to 3.61 wt%), 1,4:3,6-dianhydro-α-d-glucopyranose (up to 3.37 wt%) and unidentified dianhydrosugar (MW = 144; up to 1.64 wt%). Additionally, several other compounds have been identified but in minor quantities. Based on the results of the GC–MS, the effect of pyrolysis process conditions on the productivity of selected chemicals was discussed. These results allowed to create a general model of reactions during the catalytic pyrolysis of cellulose in the presence of copper(II) chloride and aluminum chloride.  相似文献   

12.
Water-insoluble pyrolytic cellulose with similar appearance to pyrolytic lignin was found in cellulose fast pyrolysis oil. The influence of pyrolysis temperature on pyrolytic cellulose was studied in a temperature range of 300–600 °C. The yield of the pyrolytic cellulose increased with temperature rising. The pyrolytic cellulose was characterized by various methods. The molecular weight distribution of pyrolytic cellulose was analyzed by gel permeation chromatography (GPC). Four molecular weight ranges were observed, and the Mw of the pyrolytic cellulose varied from 3.4 × 103 to 1.93 × 105 g/mol. According to the elemental analysis (EA), the pyrolytic cellulose possessed higher carbon content and lower oxygen content than cellulose. Thermogravimetric analysis (TGA) indicated that the pyrolytic cellulose underwent thermo-degradation at 127–800 °C and three mass loss peaks were observed. Detected by the pyrolysis gas chromatography–mass spectrometry (Py-GC/MS), the main pyrolysis products of the pyrolytic cellulose included saccharides, ketones, acids, furans and others. Fourier transforms infrared spectroscopy (FTIR) also demonstrated that the pyrolytic cellulose had peaks assigned to CO stretching and glycosidic bond, which agreed well with the Py-GC/MS results. The pyrolytic cellulose could be a mixture of saccharides, ketones, and their derivatives.  相似文献   

13.
Batch-mode pyrolysis of 200.0 g samples of polymers was studied at low temperature. The cracking reaction was carried out in a stainless-steel autoclave with reaction temperatures of 360, 380, 400 and 420 °C, initial pressure of 6.325 kPa (absolute pressure) and reaction times of 0–240 min. Based on the experimental results, a four-lump kinetic model has been developed to describe the production distribution of the light fractions, middle distillates and heavy fraction. This model reasonably fitted the results in each reaction of operation conditions. It was also found that the pyrolysis kinetics of separated plastic, mixed plastic and mixed plastic containing additives can be described by the same kinetic model. The plastic additives have not had a great influence on the product distribution and kinetics of the mixed plastic pyrolysis. Finally, the optimum conditions of low-temperature conversion of plastic mixtures to value-added products were established. The formation of heavy fractions from HDPE was as high as 70 wt% at 380 °C at a reaction time of 250 min. During the thermal degradation of plastic mixtures, the heavy fractions yielded up 50 wt% for 30 min reaction time at 400 °C. The total activation energies for the conversion of HDPE and the plastic mixtures were estimated to be 217.66 kJ mol−1 and 178.49 kJ mol−1, respectively.  相似文献   

14.
Pyrolysis of corncob with and without catalyst was investigated using thermogravimetry analyzer coupled with Fourier transform infrared spectroscopy (TGA–FTIR). The effects of two completely different catalysts, acid catalyst (MCM-41) and base catalyst (CaO), on the formation characteristics and composition of pyrolysis vapor were studied. The results show that these two catalysts give different product distributions. For catalytic run with MCM-41, the molality of carbonyl compounds decreases 10.2%, while that of phenols, hydrocarbons and CH4 increases 15.32%, 4.29% and 10.16% compared with non-catalytic run, respectively. The increase of phenols exhibits in a wide temperature range from about 295 °C to 790 °C in the catalytic run with MCM-41 catalyst. However, the use of CaO in pyrolysis of corncob leads to a huge change of product distribution. The molality of acids decreases 75.88%, while the molality of hydrocarbons and CH4 increases 19.83% and 51.05% compared with non-catalytic run, respectively. CaO is very effective in deacidification and the conversion of acids promotes the formation of hydrocarbons and CH4. Catalytic pyrolysis of corncob with CaO shows two main weight-loss stages. The first stage is from 235 °C to 310 °C with a weight loss of 31%. The second stage is from 650 °C to 800 °C with a weight loss of 21%.  相似文献   

15.
An environmentally friendly and cost-competitive way of producing hydrogen is the catalytic steam reforming of biomass pyrolysis liquids, known as bio-oil, which can be separated into two fractions: ligninic and aqueous. Acetic acid has been identified as one of the major organic acids present in the latter, and catalytic steam reforming has been studied for this model compound. Three different Ni coprecipitated catalysts have been prepared with varying nickel content (23, 28 and 33% expressed as a Ni/(Ni + Al) relative at.% of nickel). Several parameters have been analysed using a microscale fixed-bed facility: the effect of the catalyst reduction time, the reaction temperature, the catalyst weight/acetic acid flow rate (W/mHAc) ratio, and the effect of the nickel content. The catalyst with 33% Ni content at 650 °C showed no significant enhancement of the hydrogen yield after 2 h of reduction compared to 1 h under the same experimental conditions. Its performance was poorer when reduced for just 0.5 h. For W/mHAc ratios greater than 2.29 g catalyst min/g acetic acid (650 °C, 33% Ni content) no improvement was observed, whereas for values lower than 2.18 g catalyst min/g acetic acid a decrease in product gas yields occurred rapidly. The temperatures studied were 550, 650 and 750 °C. No decrease in product gas yields was observed at 750 °C under the established experimental conditions. Below this temperature, the aforementioned decrease became more important with decreasing temperatures. The catalyst with 28% Ni content performed better than the other two.  相似文献   

16.
Cellulose and cellulose/montmorillonite K10 mixtures of different ratio (9:1, 3:1, 1:1) were subjected to pyrolysis at temperatures from 350 to 500 °C with different heating rate (10 °C/min, 100 °C/s) to produce bio-oil and selected chemicals with high yield. The pyrolytic oil yield was in the range of 46–73.5 wt% depending on the temperature, the heating rate and the amount of catalyst. The non-catalytic fast pyrolysis at 500 °C gives the highest yield of bio-oil (84 wt%). The blending cellulose with increasing amount of montmorillonite K10 results in significant, linear decrease in bio-oil yield. The great influence of montmorillonite K10 amount on the distribution of bio-oil components was observed at 450 °C with a heating rate of 100 °C/s. The addition of catalyst to cellulose promotes the formation of 2-furfural (FF), various furan derivatives, levoglucosenone (LGO) and (1R,5S)-1-hydroxy-3,6-dioxabicyclo-[3.2.1]octan-2-one (LAC). Simultaneously, the share of levoglucosan (LG) in bio-oil decreases from 6.92 wt% and is less than 1 wt% when cellulose:MK10 (1:1, w/w) mixture at 450 °C is rapidly pyrolyzed. Additionally, several other compounds have been identified but in minor quantities. Their contributions in bio-oil also depend on the amount of catalyst.  相似文献   

17.
Hydropyrolysis of rice husk was performed using nickel-loaded Loy Yang brown coal char (Ni/LY) catalyst in a fluidized bed reactor at 500, 550, 600 and 650 °C with an aim to study the influence of catalyst and catalytic hydropyrolysis temperature on product yields and the composition of bio-oil. An inexpensive Ni/LY char was prepared by the ion-exchange method with nickel loading rate of 9 ± 1 wt.%. Nickel particles which dispersed well in Loy Yang brown coal char showed a large specific surface area of Ni/LY char of 350 m2/g. The effects of catalytic activity and hydropyrolysis temperature of rice husk using Ni/LY char were examined at the optimal condition for bio-oil yield (i.e., pyrolysis temperature 500 °C, static bed height 5 cm, and gas flow rate 2 L/min without catalyst). In the presence of catalyst, the oxygen content of bio-oil decreased by about 16% compared with that of non-catalyst. Raising the temperature from 500 to 650 °C reduced the oxygen content of bio-oil from 27.50% to 21.50%. Bio-oil yields decreased while gas yields and water content increased with increasing temperature due to more oxygen being converted into H2O, CO2, and CO. The decreasing of the oxygen content contributed to a remarkable increase in the heating value of bio-oil. The characteristics of bio-oil were analyzed by Karl Fischer, GC/MS, GPC, FT-IR, and CHN elemental analysis. The result indicated that the hydropyrolysis of rice husk using Ni/LY char at high temperature can be used to improved the quality of bio-oil to level suitable for a potential liquid fuel and chemical feedstock.  相似文献   

18.
In this paper the combination of catalytic and stepwise pyrolysis is explored. A mixture of polyethylene (PE), polypropylene (PP), polystyrene (PS), poly(ethylene terephthalate) (PET) and poly(vinyl chloride) (PVC), which resembles real municipal plastic waste, has been pyrolysed in a 3.5 dm3 semi-batch reactor at 440 °C for 30 min using a ZSM-5 zeolite as catalyst. A low temperature (300 °C) dechlorination step has been carried out both with and without catalyst. It has been proved that the application of such dechlorination step gives rise to a 75 wt% reduction of chlorine in the liquid fraction. However, such step has a negative influence on the catalyst, which loses some catalytic activity. The optimum procedure in terms of quality and chlorine content of the products is the combination of first a low temperature step without catalyst, and second the catalytic pyrolysis step.  相似文献   

19.
Egg shells were subjected to calcination–hydration–dehydration treatment to obtain CaO with high activity. The performance of CaO obtained from the calcination–hydration–dehydration treatment of egg shell and commercial CaO was tested for its catalytic activity via transesterification of waste frying oil (WFO). The results showed that the methyl ester conversion was 67.57% for commercial CaO and it was 94.52% for CaO obtained from the calcination–hydration–dehydration treatment of egg shell at a 5 wt% catalyst (based on oil weight), a methanol to oil ratio of 12:1, a reaction temperature of 65 °C and a reaction time of 1 h. The biodiesel conversion was determined by 1H Nuclear Magnetic Resonance Spectroscopy (1H NMR).  相似文献   

20.
Maize stalk was fast pyrolysed at temperatures between 420 °C and 580 °C in a fluidized-bed, and the main product of pyrolysis oil was obtained. The experimental results showed that the highest pyrolysis oil yield of 66 wt.% was obtained at 500 °C for maize stalk. Chemical composition of the pyrolysis oil acquired was analyzed by GC–MS and its heat value, stability, miscibility and corrosion characteristics were determined. These results showed that the pyrolysis oil could be directly used as a fuel oil for combustion in a boiler or a furnace without any upgrading. Alternatively, the fuel could be refined to be used by vehicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号