首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Well-ordered and highly uniform nanoripple structures on the surface of single crystal LaAlO3 (1 0 0), SrTiO3 (1 0 0) and Al2O3 (0 0 0 1) were formed via self-assembly (not by beam writing) by focused ion-beam bombardment. The morphology and topography of nanoripple structures were characterized using in-situ focused ion-beam/scanning electron microscope, as well as ex-situ atomic force microscopy. Under off-normal bombardment without sample rotation, the characteristic wavelength of nanoripples varying from 248 to 395 nm on the LaAlO3 (1 0 0) surface can be obtained by changing ion fluence and incident angle. When all sputtering parameters except the ion fluence are constant, the wavelength of nanoripples is increased with the enhanced ion fluence. These results demonstrate the potential application of using ion sputtering method for fabricating the well-ordered and highly uniform nanoripples which can be used in nanodevices.  相似文献   

2.
This paper reports on the thermo (TL), iono (IL) and photoluminescence (PL) properties of nanocrystalline CaSiO3:Eu3+ (1–5 mol %) bombarded with 100 MeV Si7+ ions for the first time. The effect of different dopant concentrations and influence of ion fluence has been discussed. The characteristic emission peaks 5D07FJ (J=0, 1, 2, 3, 4) of Eu3+ ions was recorded in both PL (1×1011–1×1013 ions cm?2) and IL (4.16×1012–6.77×1012 ions cm?2) spectra. It is observed that PL intensity increases with ion fluence, whereas in IL the peaks intensity increases up to fluence 5.20×1012 ions cm?2, then it decreases. A well resolved TL glow peak at ~304 °C was recorded in all the ion bombarded samples at a warming rate of 5 °C s?1. The TL intensity is found to be maximum at 5 mol% Eu3+ concentration. Further, TL intensity increases sub linearly with shifting of glow peak towards lower temperature with ion fluence.  相似文献   

3.
Nanodots have been fabricated on rutile TiO2(1 1 0) single crystals using Ar ion beam. Ion beam sputtering creates oxygen vacancies, leading to a 45 nm thick Ti rich layer, on the surface. Post-sputtering, rutile TiO2 also exhibits a decrease in the inter planar separation along [1 1 0] direction. Additionally, blueshift in the Eg Raman mode, representing the vibrations of oxygen atoms along c-axis, is also observed. Both these results suggest the development of a compressive stress along c-axis upon sputtering. Enhancement in intensity of A1g Raman mode also indicates modification in TiO vibrational influence.  相似文献   

4.
The effect of 60 keV Ar+-ion beam sputtering on the surface topography of p-type GaAs(1 0 0) was investigated by varying angle of incidence of the ion (0–60°) with respect to substrate normal and the ion fluence (2 × 1017–3 × 1018 ions/cm2) at an ion flux of 3.75 × 1013 ions/cm2-s. For normal incidence and at a fluence of 2 × 1017 ions/cm2, holes and islands are observed with the former having an average size and density of 31 nm and 4.9 × 109 holes/cm2, respectively. For 30° and 45° off-normal incidence, in general, a smooth surface appears which is unaffected by increase of fluence. At 60° off-normal incidence dots are observed while for the highest fluence of 3 × 1018 ions/cm2 early stage of ripple formation along with dots is observed with amplitude of 4 nm. The applicability and limitations of the existing theories of ion induced pattern formation to account for the observed surface topographies are discussed.  相似文献   

5.
《Current Applied Physics》2010,10(4):1112-1116
Sb2S3 thin films prepared by electrodeposition on indium tin oxide coated glass substrate were irradiated with 150 MeV Ni11+ ions for various fluence in the range of 1011–1013 ions/cm2. The modifications in the structure, surface morphology and optical properties have been studied as a function of ion fluence. X-ray diffraction (XRD) analysis indicates a shift in the (2 4 0) peak position towards lower diffraction angle and a decrease in grain size with increase in ion fluence. Presence of microcracks due to irradiation induced grain splitting effect has been observed from the SEM micrograph at higher ion fluence. The optical absorbance spectrum revealed a shift in the fundamental absorption edge and the band gap energy increased from a value of 1.63 eV for as-deposited films to 1.80 eV for the films irradiated with 1013 ions/cm2.  相似文献   

6.
A combinative method with reactive sputtering deposition and selenization technique was applied to prepare superconducting FeSex films on LaAlO3 substrates successfully. The influence of selenizing temperature on film components was studied. FeSe0.96 and FeSe films had similar and good performances in transport measurement but little difference in magnetic property. The critical onset temperature got to 11.2 K and Tc,0 got to 4 K approximately. X-ray diffraction, energy dispersive spectroscopy and scanning electron microscopy were used to analyze the ratio of constituents and morphology of several selenized films. FeSex film had a porous structure on surface and no well preferred orientation, which were confirmed to have little influence on superconducting properties.  相似文献   

7.
8.
Natalia Pavlenko  Thilo Kopp 《Surface science》2011,605(11-12):1114-1121
The electronic structure of interfaces between LaAlO3 and SrTiO3 is studied using local spin density approximation (LSDA) with intra-atomic Coulomb repulsion (LSDA + U). We find that the nature of the interface metallic states is strongly affected by the type of the structure (sandwich or bilayer) and by the termination surface of LaAlO3. In all structures the atomic relaxation plays a crucial role in the electronic properties of the system. While in sandwiches the structural relaxation produces a significant polarization in SrTiO3 and a splitting of Ti 3dxy orbitals, in AlO2-terminated bilayers the relaxation occurs primarily in LaAlO3 and results in an insulator-metal transition which has been observed experimentally with increasing thickness of the LaAlO3 layer.  相似文献   

9.
A novel spatial composition spread approach was used successfully to deposit a 52-member library of La2?xSrxCuO4 (0 ? x ? 0.18) using magnetron sputtering combined with physical masking techniques. Two homemade targets of La2CuO4 and La1.82Sr0.18CuO4 were sputtered at a power of 41 W RF and 42 W DC, respectively, in a process gas of 15 mTorr argon. The libraries were sputtered onto LaSrAlO4 (0 0 1), SrTiO3 (1 0 0) and MgO (1 0 0) substrates through a 52-slot shadow mask for which a ?20 V substrate bias was applied to prevent resputtering. The resulting amorphous films were post-annealed (800 °C for 1 h then at 950 °C for 2 h) in a tube sealed with oxygen gas. Wavelength Dispersive Spectroscopy (WDS) analysis revealed the expected linear variation of Sr content from 0 to 0.18 with an approximate change of 0.003 per library member. Transport measurements revealed superconducting transitions as well as changes in the quasiparticle scattering rate. These transitions and scattering rate changes were mapped to produce the T-hole concentration phase diagram.  相似文献   

10.
Ionoluminescence (IL) and photoluminescence (PL) spectra for different rare earth ions (Sm3+ and Dy3+) activated YAlO3 single crystals have been induced with 100 MeV Si7+ ions with fluence of 7.81×1012 ions cm?2. Prominent IL and PL emission peaks in the range 550–725 nm in Sm3+ and 482–574 nm in Dy3+ were recorded. Variation of IL intensity in Dy3+ doped YAlO3 single crystals was studied in the fluence range 7.81×1012–11.71×1012 ions cm?2. IL intensity is found to be high in lower ion fluences and it decreases with increase in ion fluence due to thermal quenching as a result of an increase in the sample temperature caused by ion beam irradiation. Thermoluminescence (TL) spectra were recorded for fluence of 5.2×1012 ions cm?2 on pure and doped crystals at a warming rate of 5 °C s?1 at room temperature. Pure crystals show two glow peaks at 232 (Tg1) and 328 °C (Tg2). However, in Sm3+ doped crystals three glow peaks at 278 (Tg1), 332 (Tg2) and 384 °C (Tg3) and two glow peaks at 278 (Tg1) and 331 °C (Tg2) in Dy3+ was recorded. The kinetic parameters (E, b s) were estimated using glow peak shape method. The decay of IL intensity was explained by excitation spike model.  相似文献   

11.
Biaxially textured GdBa2Cu3O7?z (GdBCO) films with Tc above 93 K have been prepared on (0 0 l) LaAlO3 substrate by self-developed non-fluorine polymer-assisted chemical solution deposition (PA-CSD) approach. The GdBCO films show smooth and crack-free morphology. Many nanoscale particles with homogeneous distribution are observed in the GdBCO films, which have not been observed yet in the YBa2Cu3O7?z (YBCO) films prepared by the same processing technique. Besides a high Jc (77 K, 0 T) of 2.28 MA/cm2, the optimized GdBCO films show a better JcB behavior and an improved high-field Jc, compared to the YBCO films.  相似文献   

12.
Pure (0 0 l)-textured CeO2 buffer layers were deposited on single crystal r-plane Al2O3 (1–102) substrate by a hybrid process which was combined with magnetron sputtering for the seed layer and metal–organic deposition for the subsequent layer. Strongly c-axis oriented YBCO films were deposited on the CeO2 buffered r-cut Al2O3 (1–102) substrates. Atomic force microscope and scanning electronic microscopy results show that the prepared buffers and YBCO films are relatively dense and smooth. The critical current of the YBCO films exceeds 1.5 MA/cm2 at 77 K with the superconducting transition temperature of 90 K. The surface resistivity is as below as 14 μΩ at 1 GHz frequency. The results demonstrate that the hybrid route is a very promising method to prepare YBCO films for microwave application, which can combine the sputtering advantage for preparing of highly c-axis oriented CeO2 buffer layers and the advantages of metal–organic deposition with rapid processing, low cost and easy preparation of large-area YBCO films.  相似文献   

13.
Theoretical calculations focused on the geometry, stability, electronic and magnetic properties of small palladium clusters Pdn (n=1–5) adsorbed on the NiAl(1 1 0) alloy surface were carried out within the framework of density functional theory (DFT). In agreement with the experimental observations, both Ni-bridge and Al-bridge sites are preferential for the adsorption of single palladium atom, with an adsorption energy difference of 0.04 eV. Among the possible structures considered for Pdn (n=1–5) clusters adsorbed on NiAl(1 1 0) surface, Pd atoms tend to form one-dimensional (1D) chain structure at low coverage (from Pd1 to Pd3) and two-dimensional (2D) structures are more stable than three-dimensional (3D) structures for Pd4 and Pd5. Furthermore, metal-substrate bonding prevails over metal–metal bonding for Pd cluster adsorbed on NiAl(1 1 0) surface. The density of states for Pd atoms of Pd/NiAl(1 1 0) system are strongly affected by their chemical environment. The magnetic feature emerged upon the adsorption of Pd clusters on NiAl(1 1 0) surface was due to the charge transfer between Pd atoms and the substrate. These findings may shade light on the understanding of the growth of Pd metal clusters on alloy surface and the construction of nanoscale devices.  相似文献   

14.
Magnetic and magneto-optical properties of MnSb films with different crystalline orientations on various semiconductors of GaAs(1 0 0), GaAs(1 1 1)A, B, and sapphire(0 0 0 1) have been measured by a vibrating sample magnetometer (VSM) and a home-made magneto-optical Kerr effect (MOKE) system. All these samples have their easy axes in the plane and show ferromagnetic properties. Among these samples, the film on GaAs(1 1 1)B has the lowest coercive force Hc and the largest squareness (SQ) value, whereas the film on GaAs(1 0 0) shows the largest Hc and the lowest SQ value. A large Kerr rotation angle of about 0.3° was observed at a wavelength of λ=632.8 nm for the film on sapphire in the field applied both parallel and perpendicular to the film plane. However, the MnSn films on other substrates do not have an observable Kerr rotation. The dynamic effect of the hysteresis was also measured using our MOKE system. As the frequency of applied magnetic field increases, the loop rounds off at the corners and the loop area increases.  相似文献   

15.
Thin superconducting films of CeCoIn5 were prepared in situ by simultaneous thermal evaporation of indium and dc magnetic field assisted sputtering of planar metallic Ce and Co targets. To achieve an effective sputtering of the magnetic Co target a special geometry with two facing planar targets (Ce and Co) and magnetic field perpendicular to the targets was used. The stoichiometric (0 0 1)-oriented CeCoIn5 films were grown on r-cut sapphire substrates with a high-rate of 100 nm/min. The temperature dependence of the electrical resistivity revealed the characteristic heavy-fermion behavior and a superconducting transition at about 2 K in agreement with the literature data for CeCoIn5 bulk material and thin films.  相似文献   

16.
CeO2 buffer layers were deposited on YSZ single-crystal substrates using an RF-sputtering method. The development of crystalline textures of sputtered CeO2 films at different sputtering pressure and their effects on YBCO films, deposited by Metal Organic Deposition (MOD), were investigated. Both CeO2 and subsequent YBCO films grew well epitaxially. The relative XRD peak intensities of CeO2 (2 0 0) to substrate YSZ (2 0 0) increased with deposition pressure in the range of 3–5 mTorr and were inversely proportional to the θ–2θ scan FWHM values of CeO2 (2 0 0). Also, the reaction layers of BaCeO3 were thicker in the samples with lower CeO2 (2 0 0) intensities and poor out-of-plane alignment when CeO2 were deposited at the lower pressure of 3.3 mTorr. It is noted, however, that the superconducting layer grew well epitaxially on these BaCeO3 layers, possibly due to the epitaxial relation between CeO2 and YBCO. The superconducting critical currents of MOD-YBCO films showed an increasing tendency as both the Δ2θ (CeO2) and BaCeO3 peak intensities decreased.  相似文献   

17.
Cross sectional and plane-view transmission electron microscopy (X- and PV-TEM) were used to investigate the initial growth phase of 5, 10, 20 and 40 nm thick Ni1-xFex (x=0.6–0.8) films, prepared on MgO(0 0 1) covered with a buffer layer of Fe or Ni as well as on naked MgO(0 0 1). The 100 nm thick buffer layers of Fe and Ni were pre-grown on MgO(0 0 1). All of Ni0.20Fe0.80, Ni0.40Fe0.60, Fe and Ni films could be epitaxially grown at 250°C by dc-biased plasma sputtering at 2.9 kV in pure Ar gas.The films of Ni0.20Fe0.80 and Ni0.40Fe0.60 were grown in their own stable phase, bcc and fcc on MgO(0 0 1), respectively. However, Ni0.20Fe0.80 film could be grown in fcc phase pseudomorphic with Ni(0 0 1) up to 20 nm thick on Ni/MgO(0 0 1), while Ni0.40Fe0.60 film in bcc phase pseudomorphic with Fe(0 0 1) up to 10 nm thick on Fe/MgO(0 0 1). With increasing thickness, their growth phases transformed into their own stable phases. Whether or not the pseudomorphic phase may be induced and what its critical thickness may be should depend primarily on the lattice misfit between the crystal planes in contact. The growth mode of Ni0.40Fe0.60 film was investigated more in details to be compared with the simulations of the average strain energy versus thickness and with those of the critical thickness of the pseudomorphic films versus the lattice misfit between the contacted crystal planes.  相似文献   

18.
《Solid State Ionics》2006,177(9-10):863-868
Layered Li(Ni0.5Co0.5)1−yFeyO2 cathodes with 0  y  0.2 have been synthesized by firing the coprecipitated hydroxides of the transition metals and lithium hydroxide at 700 °C and characterized as cathode materials for lithium ion batteries to various cutoff charge voltages (up to 4.5 V). While the y = 0.05 sample shows an improvement in capacity, cyclability, and rate capability, those with y = 0.1 and 0.2 exhibit a decline in electrochemical performance compared to the y = 0 sample. Structural characterization of the chemically delithiated Li1−x(Ni0.5Co0.5)1−yFeyO2 samples indicates that the initial O3 structure is maintained down to a lithium content (1  x)  0.3. For (1  x) < 0.3, while a P3 type phase is formed for the y = 0 sample, an O1 type phase is formed for the y = 0.05, 0.1 and 0.2 samples. Monitoring the average oxidation state of the transition metal ions with lithium contents (1  x) reveals that the system is chemically more stable down to a lower lithium content (1  x)  0.3 compared to the Li1−xCoO2 system. The improved structural and chemical stabilities appear to lead to better cyclability to higher cutoff charge voltages compared to that found before with the LiCoO2 system.  相似文献   

19.
We have developed long RE1Ba2Cu3O7?X (RE123) coated conductors with large current capacity by the ion beam assisted deposition (IBAD) and the pulsed laser deposition using hot wall heating (HW-PLD) technique. As a result, we could fabricate an 8 m-long Gd1Ba2Cu3O7?X (Gd123) coated wire with the minimum and maximum critical current (Ic) of 951 A/cm-w and 1003 A/cm-w at 77 K, 0 T, respectively, measured in 0.7 m-long sections by the standard 4-probe technique. Furthermore, we succeeded in preparation of over 600 m-long Gd123 coated wire with the uniform Ic distribution over 600 A/cm-w. It had average, maximum and minimum Ic of 665, 698, 609 A/cm-w, respectively. The n-values of the sample showed the maximum Ic and minimum Ic were 40 and 36, respectively. As a result, we set the new world record of Ic × L value as 374535 A m (= 609 A × 615 m). The in-field performance of this long wire was quite high as well; the minimum Ic exceeded 50 A/cm-w at 77 K, 3 T.  相似文献   

20.
Nanoparticles of Mg2SiO4:Eu3+ have been prepared by the solution combustion technique and the grain size estimated by PXRD is found to be in the range 40–50 nm. Ionoluminescence (IL) studies of Mg2SiO4:Eu3+ pellets bombarded with 100 MeV Si8+ ions with fluences in the range 1.124–22.48×1012 ions cm?2 are carried out at IUAC, New Delhi, India. Five prominent IL bands with peaks at 580 nm, 590 nm, 612 nm, 655 nm and 705 nm are recorded. These characteristic emissions are attributed to the luminescence centers activated by Eu3+ cations. It is found that IL intensity decreases rapidly in the beginning. Later on, the intensity decreases slowly with further increase of ion fluence. The reduction in the ionoluminescence intensity with increase of ion fluence might be attributed to degradation of Si–O (ν3) and Si–O (2ν3) bonds present on the surface of the sample. The red emission with peak at 612 nm is due to characteristic emission of 5D07F2 of the Eu3+ cations. Thermoluminescence (TL) studies of Mg2SiO4:Eu3+ pellets bombarded with 100 MeV Si8+ cations with fluences in the range 5×1011 ions cm?2 to 5×1013 ions cm?2 are made at RT. Two prominent and well resolved TL glows with peaks at ~220 °C and ~370 °C are observed. It is observed that TL intensity increases with increase of ion fluence. This might be due to creation of new traps during swift heavy ion irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号