首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A novel parametric generator-amplifier system is discussed which for the first time allows the generation of tunable pulses in the infrared with substantial pulse shortening and with high energy conversion of up to 20%. Starting with an intense laser pulse of a mode-locked Nd: glass laser system of ≈ 8 ps, a signal pulse at ≈ 6500 cm-1 is produced by a single path parametric generator. This signal pulse is subsequently amplified generating an intense idler pulse in the IR. Varying the time delay between the signal and pump pulse in the amplifier stage, the pulse duration of signal and idler is readily adjusted. The shortest pulses are nearly bandwidth limited of duration 0.5 ps with energy conversion exceeding 5% in the frequency range around 6500 cm-1.  相似文献   

4.
5.
A table-top excimer laser system generating sub-ps pulses was used to irradiate solid targets at intensities of up to 4×1015 W/cm2. Soft X-ray spectra of various materials were measured. The X-ray conversion efficiencies were between 1–5%. Streak camera measurements showed instrument-limited X-ray pulse duration of a few ps.Partially based on the plenary talk X-Ray Generation by Sub-Picosecond UV Laser by F. P. Schäfer, G. Kühnle, S. Szatmári, and M. Steyer, presented at the XVI Int. Quant. Electron. Conf., Tokio, July 18–21, 1988, Technical Digest (The Japan Society of Applied Physics) p. 2  相似文献   

6.
Efficient amplification in a dye laser amplifier is investigated theoretically and experimentally. A five-level rate equation approach is considered including rotational relaxation of the dye molecules. The effects of the pump pulse duration and of the parameters of the input pulse are discussed. The results are compared with experimental data for 0.5 ps pulses of a pulsed dye laser. Conversion efficiencies >10% are achieved for a single pass amplifier using Nd:YAG pump pulses of 2 ns while an effective fluorescence lifetime of 1.7±0.2 ns is determined for the gain medium rhodamine 6G. The triple pass amplifier stage of the laser system achieves an energy conversion of 4% with 40 J output pulses.  相似文献   

7.
8.
We report on generation and detection of intense pulsed radiation with frequency tunability in the infrared and far-infrared spectral regions. Infrared radiation is generated with a transversally electrically excited high pressure CO2 laser. A laser pulse of a total duration of about 300 ns consisted, due to self mode locking, of a series of single pulses, some with pulse durations of less than 450 ps and peak powers larger than 20 MW. Using these pulses for optical with durations less than 400 ps were obtained. For detection a new ultrafast superconducting detector was used.  相似文献   

9.
We report on generation and detection of intense pulsed radiation with frequency tunability in the infrared and far-infrared spectral regions. Infrared radiation is generated with a transversally electrically excited high pressure CO2 laser. A laser pulse of a total duration of about 300 ns consisted, due to self mode locking, of a series of single pulses, some with pulse durations of less than 450 ps and peak powers larger than 20 MW. Using these pulses for optical pumping of a Raman D2O laser, trains of short far-infrared pulses with durations less than 400 ps were obtained. For detection a new ultrafast superconducting detector was used.  相似文献   

10.
We report on the generation of sub-30-fs near-IR light pulses by means of broadband four-wave parametric amplification in fused silica. This is achieved by frequency downconversion of visible broadband pulses provided by a commercial blue-pumped beta-barium borate crystal-based noncollinear optical parametric amplifier. The proposed method produces the IR idler pulses with energy up to ~20 μJ and tunable in wavelength from 1 to 1.5 μm. The shortest pulse duration is 17.6 fs, measured at 1.2 μm.  相似文献   

11.
Femtosecond mid-infrared laser pulses that are continuously tunable in the wavelength range from 9 to 18mum are demonstrated. These nearly bandwidth-limited pulses are generated by phase-matched difference-frequency mixing within the broad spectrum of 20-fs pulses from a mode-locked Ti:sapphire laser in GaSe. A direct determination of the pulse duration at 11.5mum gives a value of 140 fs. The average mid-infrared power of 1muW is ~100 times greater than that for infrared generation by non-phase-matched optical rectification.  相似文献   

12.
By tailoring the phase of a 100 femtosecond probe pulse we are able to obtain a narrow-band coherent anti-Stokes Raman spectroscopy (CARS) resonant signal with a width of less than 15 cm(-1), which is an order of magnitude narrower than the CARS signal from a transform limited pulse. Thus, by measuring the spectrum of the CARS signal we are able to obtain a high-resolution energy level diagram of the probed sample in spite of the broad femtosecond pulse spectrum.  相似文献   

13.
A photodetector-analogue-to-digital converter system with 1.8 ns rise and decay time is described. The photodetector waveform is fanned-out with power splitters and sampled with high-speed analogue-to-digital converters. The system is used to detect picosecond light pulses from a mode-locked Nd-glass laser with nanosecond time resolution.  相似文献   

14.
Piel J  Beutter M  Riedle E 《Optics letters》2000,25(3):180-182
A two-stage blue-pumped noncollinearly phase matched optical parametric amplifier was used to generate near-infrared pulses that were continuously tunable from 865 to 1600 nm. The pulse lengths scaled from 20 fs at the shorter wavelengths to below 50 fs at 1600 nm, with a nearly Fourier-transform-limited bandwidth. From 200 muJ of 775-nm pump light at a 1-kHz repetition rate and a 130-fs duration, 7-2.5-muJ pulse energies were generated, corresponding to a typical quantum efficiency of 25% from blue to near-infrared light.  相似文献   

15.
16.
Kliner DA  Koplow JP  Goldberg L 《Optics letters》1997,22(18):1418-1420
Tunable, narrow-bandwidth (<200-MHz), ~215-nm radiation was produced by frequency quadrupling the ~860-nm output of a high-power, pulsed GaAlAs tapered amplifier seeded by an external-cavity diode laser. Pulsing the amplifier increased the 860 nm?215 nm conversion efficiency by 2 orders of magnitude with respect to cw operation. Detection of nitric oxide and sulfur dioxide by high-resolution absorption spectroscopy was demonstrated.  相似文献   

17.
Stable, tunable, sub-picosecond pulses have been obtained by synchronously pumping a Rhodamine 6G dye laser with a frequency-doubled CW modelocked neodymium YAG laser. Careful attention has been paid to minimize amplitude and timing instabilities, resulting in dye laser pulses shorter than 500 fs. The main advantage of this new pumping source over current synchronously pumped dye lasers is that it is particularly well suited to short pulse amplification. Using this technique amplification of 2 × 106 has been achieved.  相似文献   

18.
Tunable, cw, far infrared (FIR) radiation has been generated by nonlinear mixing of radiation from two CO2 lasers in a metal-insulator-metal, (MIM) diode. The FIR difference-frequency power was radiated from the MIM diode antenna to a calibrated indium antimonide bolometer. Two-tenths of a microwatt of FIR power was generated by 250 mW from each of the CO2 lasers. Using the combination of lines from a waveguide CO2 laser, with its larger tuning range, with lines from CO2, N2O, and CO2 isotope lasers promises complete coverage of the entire far infrared band from 100 to 5000 GHz (3–200 cm–1) with stepwise-tunable cw radiation.Contribution of the National Bureau of Standards, not subject to copyright  相似文献   

19.
Picosecond pulses from a mode-locked Nd:YAG laser and a traveling-wave dye laser are mixed in an AgGaS2 crystal to generate pulses at the difference frequency. The dye laser is tunable between 1200 nm and 1460 nm resulting in a tuning range of the parametric pulses from 3.9 μm to 9.4 μm. The spectral bandwidth is quite narrow. A value of Δ?=6.5 cm-1 was measured which is constant over the whole tuning range. Several percent of the Nd:YAG laser photons are converted to infrared photons. Pump pulses of 21 ps give parametric pulses of 8 ps.  相似文献   

20.
We report a novel resistive random access memory using tri-layer dielectrics of GeO x /nano-crystal TiO2/TaON and low cost top Ni and bottom TaN electrodes. Excellent device performance of ultra-low 720 fJ switching energy, tight distributions of set/reset currents, and exceptionally long endurance of 5×109 cycles were achieved simultaneously. Such excellent endurance may create new applications such as those used for Data Centers that are ascribed to the higher-κ nano-crystal TiO2, hopping pass via grain boundaries, and fast switching speed of 100 ns to improve the dielectric fatigue during endurance stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号