首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Louis Essen (1908–1997), working at the National Physical Laboratory in Teddington, England, was the first scientist to realize that the value for the velocity of light used widely during World War II was incorrect. In 1947 he published his first determination of it, which was 16 kilometers per second higher than the accepted value, causing a great deal of controversy in the scientific community. His new value was not accepted for several years, until it was shown that it improved the precision of range-finding by radar. Essen’s result has remained as the internationally accepted value despite a number of attempts to improve on it. I discuss Essen’s work and also examine other optical and nonoptical determinations that were made in the United States, and their limits of accuracy. I also identify the reasons why it took so long for Essen’s new value to be accepted, and how it led to changes in the definition of the units of length and time.  相似文献   

2.
Paul Ehrenfest (1880–1933) received his Ph.D. degree at the University of Vienna in 1904 and moved with his wife and young daughter to St. Petersburg in 1907, where he remained until he succeeded Hendrik Antoon Lorentz (1853–1928) in the chair of theoretical physics at the University of Leiden in 1912. Drawing upon Ehrenfest’s correspondence of the period, we first examine Ehrenfest’s difficult and insecure years in St. Petersburg and then discuss his unsuccessful attempts to obtain a position elsewhere before he was appointed as Lorentz’s successor in Leiden. Pim Huijnen is writing a doctoral dissertation in history; the present paper is based upon his Master’s Thesis, “‘Die Grenze des Pathologischen’: Het leven van fysicus Paul Ehrenfest, 1904–1912,” University of Groningen, 2003. A.J.Kox is Pieter Zeeman Professor of History of Physics at the University of Amsterdam.  相似文献   

3.
A controlled quantum secure direct communication protocol (Zhang et al. in Int. J. Theor. Phys. 48:2971–2976, 2009) by using four particle cluster states was proposed recently. Yang et al. presented an attack with fake entangled particles (FEP attack) and gave an improvement (Yang et al. in Int. J. Theor. Phys. 50:395–400, 2010). In this paper, we reexamine the protocol’s security and discover that, Bob can also take a different attack, disentanglement attack, to obtain Alice’s secret message without controller’s permission. Moreover, our attack strategy also works for Yang’s improvement.  相似文献   

4.
Based upon a comparison of the viscosity experiments of James Clerk Maxwell (1831–1879) and Oskar Emil Meyer (1834–1909) in the 1860s, I argue that mathematical theory plays a significant role in both aspects of experimental practice, the design and construction of an experimental apparatus and the transformation of the observed experimental data into the value of a physical quantity. I argue further that Maxwell’s and Meyer’s evaluation of each other’s theoretical and experimental work depended significantly on the mathematical tools they employed in their theories.  相似文献   

5.
Controlled plasmon coupling is observed in nanoparticle assemblies composed of 20 nm silver ‘satellite’ nanoparticles tethered by reconfigurable duplex DNA linkers to a 50 nm gold ‘core’ particle. The assemblies incorporate silver nanoparticle–oligonucleotide conjugates prepared using a new conjugation method in which the recognition strand is anchored by a 10 base pair, double strand spacer that presents adjacent 3’- and 5’-thiols to the silver surface. Reconfiguration of the DNA linkers from a compact to an extended state results in decreased core–satellite coupling and a blue-shift in the gold core plasmon resonance. The structural basis for the observed resonance modulation is investigated through simulation of the scattering spectra of binary assemblies with various core–satellite separations. Additional simulations of core–satellite assemblies composed of gold satellite particles bound to silver cores and of assemblies composed entirely of silver particles are used to clarify the dependence of the coupling response on the composition of the components and their distribution within the assembly. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

6.
The theoretical physicist Philipp Frank (1884–1966) and the applied mathematician Richard von Mises (1883–1953) both received their university education in Vienna shortly after 1900 and became friends at the latest during the Great War.They were attached to the Vienna Circle of Logical Positivists and wrote an influential two-part work on the differential and integral equations of mechanics and physics, the Frank-Mises, of 1925 and 1927, with its second edition following in 1930 and 1935.This work originated in the lectures that the mathematician Bernhard Riemann (1826–1866) delivered on partial differential equations and their applications to physical questions at the University of G?ttingen between 1854 and 1862, which were edited and published posthumously in1869 by the physicist Karl Hattendorff (1834–1882).The immediate precursor of the Frank-Mises, however, was the extensive revision of Hattendorff’s edition of Riemann’s lectures that the mathematician Heinrich Weber (1842–1913) published in two volumes, the Riemann-Weber, of 1900 and 1901, with its second edition following in 1910 and 1912. I trace this historical lineage, explore the nature and contents of the Frank-Mises, and discuss its complementary relationship to the first volume of the text that the mathematicians Richard Courant (1888–1972) and David Hilbert (1862–1943) published on the methods of mathematical physics in 1924, the Courant-Hilbert,which, when it and its second volume of 1937 were translated into English and extensively revised in 1953 and 1961, eclipsed the classic Frank-Mises.  相似文献   

7.
The analytical response of a fs/ns double-pulse laser induced breakdown spectroscopy technique based on the orthogonal reheating induced by a ns-laser pulse on a fs-laser ablation plume is presented. All investigations have been performed in air at atmospheric pressure and employing certified copper-based-alloy targets. The emission intensities of the considered electronic transitions of Pb(I), Sn(I) and Zn(I) have been normalised with a Cu(I) emission line intensity belonging to the same considered spectral range. Emission data, acquired with inter-pulse steps of 2 μs within the delay range of 1–200 μs, have shown that fractionation takes place. Nevertheless, excellent linear regression coefficients (0.998–0.999), despite the target’s large compositional variation and fractionation effects, have been obtained by integrating all emission intensity data along the whole inter-pulse delays used. Deviations from the theoretical ratio of the Zn(I)/Cu(I) emission intensities are shown and some hypotheses about the processes involved are formulated.  相似文献   

8.
Quirino Majorana (1871–1957) was an outstanding Italian experimental physicist who investigated a wide range of phenomena during his long career in Rome,Turin, and Bologna. We focus on his experiments in Turin during 1916–1921 and in Bologna during 1921–1934 to test the validity of Albert Einstein’s postulate on the constancy of the speed of light and to detect gravitational absorption. These experiments required extraordinary skill, patience, and dedication, and all of them confirmed Einstein’s postulate and Isaac Newton’s law of universal gravitation to high precision. Had they not done so, Majorana’s fame among historians and physicists no doubt would be much greater than it is today. Giorgio Dragoni is Professor of History of Physics at the University of Bologna. Giulio Maltese is a Roman member of the Italian Society for the History of Physics and Astronomy. Luisa Atti is a Bolognese member of the Association for the Teaching of Physics.  相似文献   

9.
I discuss our replication of the wire-torsion experiments that Charles Augustin Coulomb (1736–1806) reported in a session of the Paris Académie des Sciences in 1784. I first explain the nature and purpose of the replication method and then apply it to an analysis of Coulomb’s experiments. I conclude by placing Coulomb’s presentation of his memoir into its specific historical contest.  相似文献   

10.
We have studied the behavior of the intrinsic absorption edge in zinc oxide thin films in the temperature range 80–300 K. We have observed that the intrinsic absorption edge in films with crystal sizes of ≈45 nm or larger is described by the empirical Urbach’s rule, while in films with crystallite sizes of ≈15 nm, it is described by a modified Urbach’s rule. We have calculated the effective frequency of phonons taking part in formation of the absorption edge. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 2, pp. 275–277, March–April, 2007.  相似文献   

11.
In Memoriam     
In 1905 Lord Kelvin (1824–1907) was awarded the second John Fritz Medal for a lifetime of outstanding achievements in science and technology. I sketch Kelvin’s life, education, and work in thermodynamics, electrical technology, and instrumentation, and his role in the laying of the Atlantic cable. I then turn to Kelvin’s four visits to America, in 1876 on the centenary of the Declaration of Independence of the United States of America; in 1884 when he gave his famous Baltimore Lectures at The Johns Hopkins University; in 1897 when he visited Niagara Falls for the third time and advised George Westinghouse (1846–1914) on how to develop its enormous water power for the generation of electricity; and in 1902 when he advised George Eastman (1854–1932) on the development of the photographic industry. Written in connection with the Kelvin Centenary Year 2007; see “Celebrating the Life of Lord Kelvin,” University of Glasgow News Review No. 11 (2007), 4. Matthew Trainer: Matthew Trainer received his M.Phil. degree in physical sciences at the University of Edinburgh in 1980 and currently is a laboratory instructor at the University of Glasgow where his research focuses in part on the life and work of Lord Kelvin.  相似文献   

12.
13.
R. Feynman’s “heretical” approach (Dyson in Am. J. Phys. 58:209–211, 1990; Dyson in Phys. Today 42(2):32–38, 1989) to deriving the Lorentz force based Maxwell electromagnetic equations is revisited, the its complete legacy is argued both by means of the geometric considerations and its deep relation with the vacuum field theory approach devised (Prykarpatsky et al. in Int. J. Theor. Phys. 49:798–820, 2010; Prykarpatsky et al. in Preprint ICTP, 2008, ). Being completely classical, we reanalyze the Feynman’s derivation from the classical Lagrangian and Hamiltonian points of view and construct its nontrivial relativistic generalization compatible with the vacuum field theory approach.  相似文献   

14.
D. Sen 《Pramana》2009,72(5):765-775
On the face of some recent experiments claiming the simultaneous presence of both ‘sharp interference’ and ‘highly reliable which way information’ and some others casting light on the origin of complementarity in quantum interferometric experiments, the whole issue is reviewed on the basis of our earlier precise formulation of Bohr’s complementarity principle. It is pointed out that contradicting the principle (in this specific formulation) is impossible without contradicting quantum mechanics and a lack of general consensus regarding the origin of the mutual exclusiveness is at the root of the controversy and confusions.   相似文献   

15.
In the centennial of Ettore Majorana’s birth (1906–1938?), we re-examine some aspects of his fundamental scientific production in atomic and molecular physics, including a not well known short communication. There, Majorana critically discusses Fermi’s solution of the celebrated Thomas–Fermi equation for electron screening in atoms and positive ions. We argue that some of Majorana’s seminal contributions in molecular physics already prelude to the idea of exchange interactions (or Heisenberg–Majorana forces) in his later works on theoretical nuclear physics. In all his papers, he tended to emphasize the symmetries at the basis of a physical problem, as well as the limitations, rather than the advantages, of the approximations of the method employed.  相似文献   

16.
Horace Richard Crane (1907–2007) was born and educated in California. His childhood was full of activities that helped him become an outstanding experimental physicist. As a graduate student at the California Institute of Technology (1930–1934), he had the good fortune to work with Charles C. Lauritsen (1892–1968) just as he introduced accelerator-based nuclear physics to Caltech. They shared the euphoric excitement of opening up a new field with simple, ingenious apparatus and experiments. This work prepared Crane for his career at the University of Michigan (1935–1973) where in the 1950s, after making the first measurement of the electron’s magnetic moment, he devised the g−2 technique and made the first measurement of the anomaly in the electron’s magnetic moment. A man of direct, almost laconic style, he made lasting contributions to the exposition of physics to the general public and to its teaching in high schools, community colleges, four-year colleges, and universities. I tell how he became a physicist and describe some of his early achievements.  相似文献   

17.
Current–voltage (JV) characteristics of organic bulk heterojunction diodes based on an interpenetrating network of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl esters (PCBM) have been studied in the dark and under halogen lamp illumination. The diodes contained 1:1 and 1:0.6 weight ratios of P3HT and PCBM. For both diodes the currents measured in dark (J d , commonly known as the dark current) in forward bias are found to agree with the space charge limited current (SCLC). The illuminated current consists of a current due to applied voltage (J da ) and the light generated current (J L ). J da  extracted from the illuminated current agrees well with Shockley’s diffusion and recombination current. This observation shows that illumination changes the SCLC into Shockley’s diffusion and recombination current. The forward current under illumination has been observed to be greater than the dark current, which is contrary to the photo–voltaic (PV) theory. This result is well explained by the change of SCLC into Shockley’s diffusion and recombination current. Former address of S.C. Jain: IMEC, Kapeldreef 75, 3001 Leuven, Belgium.  相似文献   

18.
This research aims for an objective identification, tracking, and a statistical analysis of the Moving Magnetic Features (MMFs) around sunspots using SOHO/MDI high-resolution magnetograms. To this end, we develop a computerized tracking program and study the motion and magnetism of the outflows of MMFs around 26 sunspots. Our method locates 4–27 MMFs per hour, with higher counts for large sunspots. We differentiate MMFs into type α that have a polarity opposite to the parent sunspots, and type β that share the sunspot’s polarity. These sunspots’ MMF subsets exhibit a wide range of central tendencies which have distinctive correlations with the sunspots. In general, α-MMFs emerge farther from the sunspot, carry less flux, and move faster than β-MMFs. The typical α/β-MMFs emerge at 2.2–8.1/0.1–3.2 Mm outside the penumbra limb, with lifetimes of 1.1–3.1/1.3–2.0 h. They are 1.1–6.6/1.4–3.6 Mm2 in area and carry 1.4–12.5/4.8–11.4 ×1018 Mx of flux. They travel a distance of 2.7–5.9/2.8–3.6 Mm with the speed of 0.5–0.9/0.4–0.7 km/s. Compared to the α-MMFs produced by large sunspots, those of small spots are smaller. They emerge closer to sunspot, move farther, live longer, and carry less flux. β-MMFs show much less correlation with the sunspots. The flux outflow carried by the MMFs ranges from 0.2 to 8.3 × 1019Mx· h−1 and does not show obvious correlation with the sunspots’ evolution. The frequency distributions of the MMFs’ distance traveled, area, and flux are exponential. This suggests the existence of numerous small, weak, and short-timescale magnetic objects which might contribute to the sunspot flux outflow.  相似文献   

19.
The paper investigated a composite photonic crystal patch antenna by using the method of finite difference time domain (FDTD). The results show that there exists a wave resonance state at 2.635 GHz, where the real part of the permittivity and permeability are all negative; its refraction index is –1. The effect has largely enhanced the electromagnetic wave’s resonance intensity, and has improved the localized extent of electromagnetic energy obviously in such photonic crystal structure (PBG), resulting in a higher antenna gain, a lower return loss, and a better improvement of the antenna’s characteristics. Due to such the advantages, the use of patch antennas can be extended to such fields as mobile communication, satellite communication, aviation, etc.  相似文献   

20.
We analyze the forgotten communication of Ettore Majorana (1906–1938?) on the Thomas-Fermi statistical model of the atom, which he presented on December 29, 1928, during the XXII General Meeting of the Italian Physical Society in Rome, and which was published in Il Nuovo Cimento, the Society’s journal, in 1929. His communication was not mentioned subsequently in any of the numerous publications of Enrico Fermi (1901–1954) and his group in Rome, nor in any of the later accounts of Majorana’s life and work. We place Majorana’s contribution within the context of contemporary research on the subject, point out its influence on the final formulation of the Thomas-Fermi statistical model by Fermi and Edoardo Amaldi (1908–1989) in 1934, and discuss Majorana’s other scientific contributions before his mysterious disappearance in 1938. Francesco Guerra is Professor of Theoretical Physics in the Department of Physics at the University of Rome “La Sapienza.” His main fields of research are quantum-field theory, statistical mechanics of complex systems, and the history of nuclear physics. Nadia Robotti is Professor of History of Physics in the Department of Physics at the University of Genoa. Her main fields of research are the history of atomic physics, quantum mechanics, and nuclear physics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号