首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The singularities of two-phase flows in Laval nozzles were investigated within the framework of the model of a two-fluid continuous medium [1, 2] mainly in a quasi-one-dimensional approximation ([3] and the bibliography therein). Two-dimensional computations of such flows were performed only recently by using the method of buildup [4–7]. However, systematic computations to clarify the influence of the second phase on such fundamental nozzle characteristics as the magnitude of the specific impulse, its losses, and discharge coefficient were performed only in the quasi-one-dimensional approximation [8, 9] and only for the supersonic parts of the nozzle in the two-dimensional approximation under the assumption of uniform flow in the throat [10, 3]. Such an investigation is performed in this paper in the two-dimensional case for the nozzle as a whole, including the sub-, trans-, and supersonic flow domains, and a comparative analysis is given of the magnitudes of the loss of a unit pulse obtained in the quasi-one-dimensional approximation [8].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 86–91, November–December, 1977.  相似文献   

2.
This paper based on the author's work [6] makes a detailed examination of the two-dimensional problem of separationless flow past a shell filled with gas, fixed at one point and at two points. It is assumed that the fluid is ideal, incompressible, and weightless and that the shell cannot be stretched.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 15–20, September–October, 1984.  相似文献   

3.
An approach to the numerical modeling of turbulent natural convection modes on the basis of two-dimensional nonstationary Navier-Stokes equations without the use of additional empirical information is elucidated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkostii Gaza, No. 5, pp. 8–15, September–October, 1977.The authors are grateful to A. G. Kirdyashkin for consultations on the method and results of the experiments to G. S. Glushko for useful remarks, and to K. G. Dubovik for aid in performing the computations.  相似文献   

4.
We consider parametrically excited vibrations of shallow cylindrical panels. The governing system of two coupled nonlinear partial differential equations is discretized by using the Bubnov–Galerkin method. The computations are simplified significantly by the application of computer algebra, and as a result low dimensional models of shell vibrations are readily obtained. After applying numerical continuation techniques and ideas from dynamical systems theory, complete bifurcation diagrams are constructed. Our principal aim is to investigate the interaction between different modes of shell vibrations under parametric excitation. Results for system models with four of the lowest modes are reported. We essentially investigate periodic solutions, their stability and bifurcations within the range of excitation frequency that corresponds to the parametric resonances at the lowest mode of vibration.  相似文献   

5.
Many of the published theoretical studies of quasi-one-dimensional flows with combustion have been devoted to combustion in a nozzle, wake, or streamtube behind a normal shock wave [1–6].Recently, considerable interest has developed in the study of two-dimensional problems, specifically, the effective combustion of fuel in a supersonic air stream.In connection with experimental studies of the motion of bodies in combustible gas mixtures using ballistic facilities [7–9], the requirement has arisen for computer calculations of two-dimensional supersonic gas flow past bodies in the presence of combustion.In preceding studies [10–12] the present author has solved the steady-state problem under very simple assumptions concerning the structure of the combustion zone in a detonation wave.In the present paper we obtain a numerical solution of the problem of supersonic hydrogen-air flow past a sphere with account for the nonequilibrium nature of eight chemical reactions. The computations encompass only the subsonic and transonic flow regions.The author thanks G. G. Chernyi for valuable comments during discussion of the article.  相似文献   

6.
A method is proposed to solve the contact problem for laminated anisotropic shells of revolution. The method is based on a two-dimensional model that accounts for transverse shears and reduction. Also the method is based on the method of successive approximations, the generalized pseudo-force method, and a numerical-analytical method of solving boundary-value problems. The results obtained for a cylindrical shell of complex thickness structure are compared with those obtained in three-dimensional formulation__________Translated from Prikladnaya Mekhanika, Vol. 41, No. 5, pp. 68–75, May 2005.  相似文献   

7.
The physical occurrence that crack surfaces are in contact at the compressive edges when a flat or a shell is subjected to a bending load has been recognized. This article presents a theoretical analysis of crack–face contact effect on the stress intensity factor of various shell structures such as spherical shell, cylindrical shell containing an axial crack, cylindrical shell containing a circumferential crack and shell with two non-zero curvatures, under a bending load. The formulation of the problem is based on the shear deformation theory, incorporating crack–face contact by introducing distributed force at the compressive edge. Material orthotropy is concerned in this analysis. Three-dimensional finite element analysis (FEA) is conduced to compare with the theoretical solution. It is found that due to curvature effect crack–face contact behavior in shells differs from that in flat plates, in that partial contact of crack surfaces may occur in shells, depending on the shell curvature and the nature of the bending load. Crack–face contact has significant influence on the stress intensity factor and it increases the membrane component but decreases the bending component.  相似文献   

8.
During the motion of a partially ionized gas in magnetohydrodynamic channels the distribution of the electrical conductivity is usually inhomogeneous due to the cooling of the plasma near the electrode walls. In Hall-type MHD generators with electrodes short-circuited in the transverse cross section of the channel the development of inhomogeneities results in a decrease of the efficiency of the MHD converter [1]. A two-dimensional electric field develops in the transverse section. Numerical computations of this effect for channels of rectangular cross section have been done in [2, 3], At the same time it is advisable to construct analytic solutions of model problems on the potential distribution in Hall channels, which would permit a qualitative analysis of the effect of the inhomogeneous conductivity on local and integral characteristics of the generators. In the present work an exact solution of the transverse two-dimensional problem is given for the case of a channel with elliptical cross section stretched along the magnetic field. The parametric model of the distribution of the electrical conductivity of boundary layer type has been used for obtaining the solution. The dependences of the electric field and the current and also of the integral electrical characteristics of the generator on the inhomogeneity parameters are analyzed.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 3–10, January–February, 1973.  相似文献   

9.
The elastoviscoplastic behavior of a discretely reinforced shell under axisymmetric nonstationary loading is considered within the framework of the geometrically and physically nonlinear Timoshenko-type theory of shells. The stress–strain state of the structure is studied in terms of the incremental plasticity with kinematic hardening and dynamic yielding condition, which allows for the dynamic viscosity of the structure. The nonstationary behavior of a rigidly fastened reinforced shell under axisymmetric pulse loading normal to the shell surface is considered as an example. The deflection–time and deflection–space relationships are found  相似文献   

10.
In [1, 2], Kiselev and Rapoport investigated the flow of a jet over an elastic plate and shell. In the present paper, the problem of two-sided flow past an elastic shell is investigated in the exact nonlinear formulation. At a sufficiently high rigidity and small curvature of the shell in undeformed state it is shown that the problem has a unique solution, and a method is proposed for finding it. Some results of calculations are given.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 139–143, September–October, 1981.  相似文献   

11.
Results of an experimental study of fragmentation effects in the explosion and the piercing power of the fragments of inert masses in the form of hemispherical aluminum and soft–steel shells enclosing the spherical charge of a high explosive under their action on flat steel, aluminum, steel–net, and claydite—concrete barriers are given. A design of the lightest spherical explosion–proof container with a load–carrying steel or glass–reinforced plastic shell protected by a splinter–proof layer capable of withstanding an explosion of a high–explosive charge (with a twofold safety factor) with an inert steel shell is proposed.  相似文献   

12.
A law for conservation of energy is used in solving a system of equations describing the one-dimensional motion of an ideally plastic incompressible shell exposed to an expanding polytropic gas in equilibrium. Analytic expressions are obtained for determining the stress and velocity fields in the shell as a function of the displacement of the internal shell boundary.Translated from Zhurual Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 172–176, May–June, 1975.  相似文献   

13.
An analysis is presented of the interaction between longitudinal and transverse motions of a circular cylindrical shell under impact on the end surface. At infinite and finite velocities of perturbation propagation along the generatrix this analysis reveals the instability modes in the shell which build up fastest and are similar to those revealed if the buckling process at a finite velocity of perturbation propagation were described in the real time of compressive loading action. It is established that a cylindrical shell under intensive loading can be simulated by a rod under longitudinal impact (the similarity parameters are indicated). This conclusion is confirmed by a comparison with experimental results.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 95–100, March–April, 1972.  相似文献   

14.
A method and results of a numerical solution of the problem of supersonic flow in an angle formed by two perpendicular plates are presented. The computations are performed by the method of build-up. Shocks are obtained as domains with a strong change in the flow parameters.Moscow. Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 2, pp. 162–166, March–April, 1972.  相似文献   

15.
The case of impact on a thin annular fluid layer with a gas-filled cavity is considered. The solution of the problem reduces to integrating a system of two first-order ordinary differential equations. The equations are analyzed qualitatively, and some exact solutions are found. Cases are noted of pulsation of the cavity, and the influence of counter-pressure and viscosity is investigated. The experimental results obtained are in agreement with the numerical computations carried out herein.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 98–106, November–December, 1970.The authors are grateful to A. M. Kogan and L. V. Mostovaya for performing the computations.  相似文献   

16.
The second and third terms in the asymptotic expansion of the stream function in the nonsimilar problem of the development of a two-dimensional turbulent jet in an unbounded space are found in final form. Results of experimental investigations of free turbulent jets are cited, and the effect of the initial velocity profile on the aerodynamic characteristics of the jet is considered. The problem of the development of a two-dimensional turbulent jet in an unbounded space has been considered in [1–3]. The existing solution is similar, and is valid only at a sufficiently large distance from the slit. Allowance for the finite dimensions of the slit leads to a nonsimilar problem. The papers [4–6] are devoted to the experimental investigation of the free two-dimensional turbulent jet.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 137–142, July–August, 1971.  相似文献   

17.
The forced nonlinear vibrations of a thin cylindrical shell completely filled with a liquid are studied. A refined mathematical model is used. The model takes into account the nonlinear terms up to the fifth power of the generalized displacement of the shell. The Bogolyubov’Mitropolsky averaging method is used to plot amplitude’frequency response curves for steady-state vibrations. The steady-state vibrations at the frequency of principal harmonic resonance are analyzed for stability__________Translated from Prikladnaya Mekhanika, Vol. 41, No. 2, pp. 52–59, February 2005.  相似文献   

18.
A presentation is made of the numerical results obtained in a stress–strain analysis of thin and nonthin orthotropic shells with due regard for the physical nonlinearity and small and nonsmall shear stiffness of composites. A spherical shell with a circular hole is used as an example to analyze how the above-mentioned factors affect the distribution of stresses and strains depending on the shell thickness for adopted deformation models (the Kirchhoff–Love and Timoshenko hypotheses). Generalized conclusions are drawn from which it is possible to decide which of the composite properties and shell models should be given more priority.  相似文献   

19.
A useful means of constructing approximate flow models is the hydraulic (for two-dimensional problems quasi-one-dimensional) approach, based on averaging the initial nonuniform flows over some direction or cross section [1]. In this case, at the expense of a rougher model it is possible to reduce the dimensionality of the problem. Here, this approach is extended to unsteady two-dimensional gas-dynamic processes; certain problems (flow around a cone or a blunt body, jet flows) are considered in the framework of the quasi-one-dimensional model obtained, and results are compared with the solutions of the corresponding two-dimensional problems.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 136–143, March–April, 1989.  相似文献   

20.
The paper examines the dynamics and stability of fluid-conveying cylindrical shells having pinned–clamped or clamped–pinned boundary conditions, where “pinned” is an abbreviation for “simply supported”. Flügge's equations are used to describe the shell motion, while the fluid-dynamic perturbation pressure is obtained utilizing the linearized potential flow theory. The solution is obtained using two methods — the travelling wave method and the Fourier-transform approach. The results obtained by both methods suggest that the negative damping of the clamped–pinned systems and positive damping of the pinned–clamped systems, observed by previous investigators for any arbitrarily small flow velocity, are simply numerical artefacts; this is reinforced by energy considerations, in which the work done by the fluid on the shell is shown to be zero. Hence, it is concluded that both systems are conservative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号