首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An extracellular thermostable α-galactosidase producing Aspergillus terreus GR strain was isolated from soil sample using guar gum as sole source of carbon. It was purified to apparent homogeneity by acetone precipitation, gel filtration followed by DEAE-Sephacel chromatographic step. The purified enzyme showed a single band after sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight of the purified enzyme after SDS-PAGE was 108 kDa. The enzyme showed optimum pH and temperature of 5.0 and 65 °C, respectively, for artificial substrate pNPαGal. α-Galactosidase from A. terreus GR is found to be thermostable, as it was not inactivated after heating at 65 °C for 40 min. The K m for pNPαGal, oNPαGal, raffinose, and stachyose are 0.1, 0.28, 0.42, and 0.33 mM, respectively. Inhibitors such as 1,10-phenanthroline, phenylmethylsulfonyl fluoride, ethylenediaminetetraacetic acid, mercaptoethanol, and urea have no effect, whereas N-bromosuccinamide inhibited enzyme activity by 100%. Among metal ions tested, Mg2+, Ni2+, Ca2+, Co2+, and Mn2+ had no effect on enzyme activity, but Ag+, Hg2+, and Cu2+ have inhibited complete activity.  相似文献   

2.
Cross-linked enzyme aggregates (CLEA) of Aspergillus oryzea α-amylase (AoAA) and Aspergillus niger glucoamylase (AnGA) were prepared using glutaraldehyde and dextran polyaldehyde as cross-linkers. The maximum activity recoveries for glutaraldehyde cross-linking were 21.8 % and 41.2 %, respectively. The addition of a proteic feeder (bovine serum albumin) exhibited a negative effect on the activity recoveries for both enzymes. Dextran polyaldehyde was used as a cross-linking agent instead of glutaraldehyde to reduce the activity losses. As a result, an activity recovery of 60.0 % was obtained for Aspergillus oryzea α-amylase. On the other hand, no activity recovery was observed for Aspergillus niger glucoamylase due to the latter enzyme’s affinity for dextran.  相似文献   

3.
The aim of this work was to establish optimal conditions for the maximum production of endo-β-1,4 mannanases using cheaper sources. Eight thermotolerant fungal strains were isolated from garden soil and compost samples collected in and around the Gulbarga University campus, India. Two strains were selected based on their ability to produce considerable endo-β-1,4 mannanases activity while growing in liquid medium at 37 °C with locust bean gum (LBG) as the only carbon source. They were identified as Aspergillus niger gr and Aspergillus flavus gr. The experiment to evaluate the effect of different carbon sources, nitrogen sources, temperatures and initial pH of the medium on maximal enzyme production was studied. Enzyme productivity was influenced by the type of polysaccharide used as the carbon source. Copra meal defatted with n-hexane showed to be a better substrate than LBG and guar gum for endo-β-1,4 mannanases production by A. niger gr (40.011 U/ml), but for A. flavus gr (33.532 U/ml), the difference was not significant. Endo-β-1,4 mannanases produced from A. niger gr and A. flavus gr have high optimum temperature (65 and 60 °C) and good thermostability in the absence of any stabilizers (maintaining 50% of residual activity for 8 and 6 h, respectively, at 60 °C) and are stable over in a wide pH range. These new strains offer an attractive alternative source of enzymes for the food and feed processing industries.  相似文献   

4.
We expressed a putative β-galactosidase from Sulfolobus acidocaldarius in Escherichia coli and purified the recombinant enzyme using heat treatment and Hi-Trap ion-exchange chromatography. The resultant protein gave a single 57-kDa band by SDS-PAGE and had a specific activity of 58 U/mg. The native enzyme existed as a dimer with a molecular mass of 114 kDa by gel filtration. The maximum activity of this enzyme was observed at pH 5.5 and 90 oC. The half-lives of the enzyme at 70, 80, and 90 oC were 494, 60, and 0.2 h, respectively. The hydrolytic activity with p-nitrophenyl(pNP) substrates followed the order p-nitrophenyl-β-d-fucopyranoside > pNP-β-d-glucopyranoside > pNP-β-d-galactopyranoside > pNP-β-d-mannopyranoside > pNP-β-d-xylopyranoside, but not toward aryl-α-glycosides or pNP-β-l-arabinofuranoside. Thus, the enzyme was actually a β-glycosidase. The β-glycosidase exhibited transglycosylation activity with pNP-β-d-galactopyranoside, pNP-β-d-glucopyranoside, and pNP-β-d-fucopyranoside in decreasing order of activity, in the reverse order of its hydrolytic activity. The hydrolytic activity was higher toward cellobiose than toward lactose, but the transglycosylation activity was lower with cellobiose than with lactose.  相似文献   

5.
A β-glucosidase gene (bgl4) from Humicola grisea var thermoidea was successfully expressed in Saccharomyces cerevisiae. The recombinant protein (BGL4 Sc ) was initially detected associated with yeast cells and later in the culture medium. BGL4 Sc showed optimal pH and temperature of 6.0 and 40 °C, respectively, and an apparent molecular mass of 57 kDa. The enzyme showed activity against cellobiose and synthetic substrates, and was inhibited more than 80% by Fe2+, Cu2+, Zn2+, and Al3+. Using p-nitrophenyl-β-d-glucopyranoside (pNPG) as substrate, BGL4 Sc presented a V max of 6.72 μmol min−1 mg total protein−1 and a K m of 0.16 mM under optimal conditions. Most important, BGL4 Sc is resistant to inhibition by glucose and the calculated K i value for this sugar is 70 mM. This feature prompts BLG4 Sc as an ideal enzyme to be used in the saccharification process of lignocellulosic materials for ethanol production.  相似文献   

6.
Cartilage tissue engineering is believed to provide effective cartilage repair post-injuries or diseases. Biomedical materials play a key role in achieving successful culture and fabrication of cartilage. The physical properties of a chitosan/gelatin hybrid hydrogel scaffold make it an ideal cartilage biomimetic material. In this study, a chitosan/gelatin hybrid hydrogel was chosen to fabricate a tissue-engineered cartilage in vitro by inoculating human adipose-derived stem cells (ADSCs) at both dynamic and traditional static culture conditions. A bioreactor that provides a dynamic culture condition has received greater applications in tissue engineering due to its optimal mass transfer efficiency and its ability to simulate an equivalent physical environment compared to human body. In this study, prior to cell-scaffold fabrication experiment, mathematical simulations were confirmed with a mass transfer of glucose and TGF-β2 both in rotating wall vessel bioreactor (RWVB) and static culture conditions in early stage of culture via computational fluid dynamic (CFD) method. To further investigate the feasibility of the mass transfer efficiency of the bioreactor, this RWVB was adopted to fabricate three-dimensional cell-hydrogel cartilage constructs in a dynamic environment. The results showed that the mass transfer efficiency of RWVB was faster in achieving a final equilibrium compared to culture in static culture conditions. ADSCs culturing in RWVB expanded three times more compared to that in static condition over 10 days. Induced cell cultivation in a dynamic RWVB showed extensive expression of extracellular matrix, while the cell distribution was found much more uniformly distributing with full infiltration of extracellular matrix inside the porous scaffold. The increased mass transfer efficiency of glucose and TGF-β2 from RWVB promoted cellular proliferation and chondrogenic differentiation of ADSCs inside chitosan/gelatin hybrid hydrogel scaffolds. The improved mass transfer also accelerated a dynamic fabrication of cell-hydrogel constructs, providing an alternative method in tissue engineering cartilage.  相似文献   

7.
Partial purification of β-galactosidase from the crude extract of Kluyveromyces lactis was carried out using water-in-isooctane microemulsions formed by the anionic surfactant, sodium di-ethylhexyl sulfosuccinate (Aerosol OT). In order to obtain the crude extract, yeast cells of K. lactis were disrupted by a cell disrupter and separated. The purification of β-galactosidase from the extract by a recently developed one-step reversed micellar (i.e., microemulsion-based) extraction method was then tested, by measuring total protein mass and enzyme activity in the product stream and by analyzing its composition using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and gel filtration chromatography. Effects of salt concentration, protein concentration, and pH on the extraction were investigated. Using this approach, a 5.4-fold purification of β-galactosidase was achieved with 96 % total activity recovery, using a feed containing crude extract and 50 mM K-phosphate buffer (pH 7.5) and 50 mM KCl. Gel filtration chromatography showed that the single extraction was successful at removing low molecular weight impurity proteins (molecular weight (MW)?<?42 kDa) from the crude extract.  相似文献   

8.
The crystalline modifications and of polypropylene (PP) were studied by using polarized light microscopy (PLM), wide-angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC). Typically crystals surrounded by spherulites were observed at low temperature. With increasing temperature the crystals melted and a new crystal appeared. More interestingly, the melting temperature of the new crystal was about 5 ° higher than that of spherulites originally present in the sample formed isothermally. It was assumed that this new crystal was the recrystalline crystal. This assumption was supported by the DSC results. Furthermore, the crystallization kinetics of the PP used was studied on the basis of the traditional Avrami analysis. As a result, the Avrami exponents of crystallization temperature from 120 to 130 °C ranged between 4.21 and 3.60, indicating that the crystallization mechanism of PP order melt was spherulitic growth and random nucleation.  相似文献   

9.
A preparation method was developed for previously unknown tetrazole derivatives containing in the 1, 2, and/or 5 positions of the tetrazole ring N-methyldiazene-N-oxide-N′-oxymethyl groups.  相似文献   

10.
Abstract  A new compound was isolated from the reaction mixture after O-demethylation of 6-O-acetyl-10α-acetoxycodeine with boron tribromide. The structure of this compound, 10α-hydroxy-β-isomorphine, was elucidated by spectral data, and its spatial arrangement was deduced from an NOE experiment. Capillary zone electrophoresis was used for separation of morphine and its 10-hydroxy analogues. Graphical abstract     相似文献   

11.
A new natural product, iso-α-cyclopiazonic acid (1), together with its isomer α-cyclopiazonic acid (2); three mycotoxins: aflatoxin B1 (AFB1) (3), aflatoxin Q1 (AFQ1) (4), and O-methylsterigmatocystin (OMST) (5); two diketopiperazine alkaloids: ditryptophenaline (6) and 3-[(1H-indol-3-yl)methyl]-6-benzylpiperazine-2,5-dione (7), were isolated from the marine-derived fungus Aspergillus flavus. Their structures were determined by analysis of spectroscopic data. The cytotoxicities of compounds 1 and 2 were studied using HL-60, MOLT-4, A-549, and BEL-7402 cell lines.  相似文献   

12.
From three cell-associated β-xylosidases produced by Aureobasidium pullulans CBS 135684, the principal enzyme was enriched to apparent homogeneity and found to be active at high temperatures (60–70 °C) over a pH range of 5–9 with a specific activity of 163.3 units (U) mg?1. The enzyme was thermostable, retaining over 80% of its initial activity after a 12-h incubation at 60 °C, with half-lives of 38, 22, and 10 h at 60, 65, and 70 °C, respectively. Moreover, it was tolerant to xylose inhibition with a K i value of 18 mM. The K m and V max values against p-nitrophenyl-β-d-xylopyranoside were 5.57 ± 0.27 mM and 137.0 ± 4.8 μmol min?1 mg?1 protein, respectively. When combining this β-xylosidase with xylanase from the same A. pullulans strain, the rate of black liquor xylan hydrolysis was significantly improved by up to 1.6-fold. The maximum xylose yield (0.812 ± 0.015 g g?1 dry weight) was obtained from a reaction mixture containing 10% (w/v) black liquor xylan, 6 U g?1 β-xylosidase and 16 U g?1 xylanase after incubation for 4 h at 70 °C and pH 6.0.  相似文献   

13.
20S-Protopanaxadiol (3β,12β,20S-trihydroxydammar-24-ene) 3-, 12-, and 20-O-β-D-galactopyranosides were synthesized for the first time. Condensation of 12β-acetoxy-3β,20S-dihydroxydammar-24-ene (1) and 2,3,4,6-tetra-O-acetyl-α-D-galactopyranosylbromide (α-acetobromogalactose) (2) under Koenigs–Knorr conditions with subsequent removal of the protecting groups resulted in regio- and stereoselective formation of 20S-protopanaxadiol 3-O-β-D-galactopyranoside, an analog of the natural ginsenoside Rh2. Glycosylation of 12β,20S-dihydroxydammar-24-en-3-one (5) by 2 with subsequent treatment of the reaction products with NaBH4 in isopropanol and deacetylation with NaOMe gave 20S-protopanaxadiol 12- and 20-O-β-Dgalactopyranosides.  相似文献   

14.
The sodium salt of N-(6-chloronicotinoyl)-γ-aminobutyric acid, a structural analog of the known nootropic and vasidilating drug picamilon, was synthesized via Schotten–Baumann acylation of γ-aminobutyric acid with 6-chloronicotinoyl chloride and subsequent neutralization of the N-(6-chloronicotinoyl)-γ-aminobutyric acid that was obtained in >60% yield.  相似文献   

15.

Background

Previous studies have demonstrated that members of Trichoderma are able to generate appreciable amount of extracellular amylase and glucoamylase on soluble potato starch. In this study the α-amylase was purified and characterized from Trichoderma pseudokoningii grown on orange peel under solid state fermentation (SSF).

Results

Five α-amylases A1-A5 from Trichodrma pseudokoningii were separated on DEAE-Sepharose column. The homogeneity of α-amylase A4 was detected after chromatography on Sephacryl S-200. α-Amylase A4 had molecular weight of 30 kDa by Sephacryl S-200 and SDS-PAGE. The enzyme had a broad pH optimum ranged from 4.5 to 8.5. The optimum temperature of A4 was 50 °C with high retention of its activity from 30 to 80 °C. The thermal stability of A4 was detected up to 50 °C and the enzyme was highly stable till 80 °C after 1 h incubation. All substrate analogues tested had amylase activity toward A4 ranged from 12 to 100% of its initial activity. The Km and Vmax values of A4 were 4 mg starch/ml and 0.74 μmol reducing sugar, respectively. The most of metals tested caused moderate inhibitory effect, except of Ca2+ and Mg2+ enhanced the activity. Hg2+ and Cd+?2 strongly inhibited the activity of A4. EDTA as metal chelator caused strong inhibitory effect.

Conclusions

The properties of the purified α-amylase A4 from T. pseudokoningii meet the prerequisites needed for several applications.
  相似文献   

16.
Catalytic aminomethylation of pyrrole and indole with N,N,N′,N′-tetramethylmethanediamine in the presence of 5 mol % of ZrOCl2·8H2O proceeds selectively at the positions 2, 5 of pyrrole and 1, 3 of indole. Carbazole under the same conditions affords 3-formyl-9-aminomethyl derivative. The reaction in the presence of 5 mol % of K2CO3 occurs as monoaminomethylation: for pyrrole at the position 2, for indole at the position 3, and for carbazole at the nitrogen atom of the substrate. Water-soluble 1,1′-(1H-pyrrole-2,5-diyl)bis(N,N-dimethylmethanamine) exhibits a fungistatic activity with respect to phytopathogenic fungi Rhizoctonia solani.  相似文献   

17.
The xylanase biosynthesis is induced by its substrate—xylan. The high xylan content in some wastes such as wheat residues (wheat bran and wheat straw) makes them accessible and cheap sources of inducers to be mainly applied in great volumes of fermentation, such as those of industrial bioreactors. Thus, in this work, the main proposal was incorporated in the nutrient medium wheat straw particles decomposed to soluble compounds (liquor) through treatment of lignocellulosic materials in autohydrolysis process, as a strategy to increase and undervalue xylanase production by Aspergillus ochraceus. The wheat straw autohydrolysis liquor produced in several conditions was used as a sole carbon source or with wheat bran. The best conditions for xylanase and β-xylosidase production were observed when A. ochraceus was cultivated with 1% wheat bran added of 10% wheat straw liquor (produced after 15 min of hydrothermal treatment) as carbon source. This substrate was more favorable when compared with xylan, wheat bran, and wheat straw autohydrolysis liquor used separately. The application of this substrate mixture in a stirred tank bioreactor indicated the possibility of scaling up the process to commercial production.  相似文献   

18.
β-Methoxycarbonyl-γ-butyrolactones bearing a γ-aromatic substituent were prepared via copper-catalyzed reductive aldol addition/lactonization domino reactions of ketones with α,β-unsaturated dicarboxylate esters and a silane under ambient temperature. The reaction has advantage of using readily available reagents, mild conditions and high efficiency.  相似文献   

19.
Maakia amurensis (strain A-18) cell culture synthesizes a significant quantity of isoflavonoids, a large part of which consists of isoflavone glucosides and malonylglucosides. β−D-Hydrolase enzyme complexes from the marine mollusk Littorina sitkana and the marine mycelial fungus P. canescens were used to obtain isoflavones from their conjugated forms. The specificity of β−D-glucanases from L. sitkana for various glycosides was studied. The deglycosylation efficiency depended on the aglycon structure. The deglycosylated fraction of isoflavonoids obtained from M. amurensis cell culture exhibited antitumor activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号