首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Skin hyperpigmentation resulting from excessive tyrosinase expression has long been a problem for beauty lovers, which has not yet been completely solved. Although researchers are working on finding effective tyrosinase inhibitors, most of them are restricted, due to cell mutation and cytotoxicity. Therefore, functional foods are developing rapidly for their good biocompatibility. Food-derived peptides have been proven to display excellent anti-tyrosinase activity, and the mechanisms involved mainly include inhibition of oxidation, occupation of tyrosinase’s bioactive site and regulation of related gene expression. For anti-oxidation, peptides can interrupt the oxidative reactions catalyzed by tyrosinase or activate an enzyme system, including SOD, CAT, and GSH-Px to scavenge free radicals that stimulate tyrosinase. In addition, researchers predict that peptides probably occupy the site of the substrate by chelating with copper ions or combining with surrounding amino acid residues, ultimately inhibiting the catalytic activity of tyrosinase. More importantly, peptides reduce the tyrosinase expression content, primarily through the cAMP/PKA/CREB pathway, with PI3K/AKT/GSK3β, MEK/ERK/MITF and p38 MAPK/CREB/MITF as side pathways. The objective of this overview is to recap three main mechanisms for peptides to inhibit tyrosinase and the emerging bioinformatic technologies used in developing new inhibitors.  相似文献   

2.
Recently, the demand for food proteins in the market has increased due to a rise in degenerative illnesses that are associated with the excessive production of free radicals and the unwanted side effects of various drugs, for which researchers have suggested diets rich in bioactive compounds. Some of the functional compounds present in foods are antioxidant and antimicrobial peptides, which are used to produce foods that promote health and to reduce the consumption of antibiotics. These peptides have been obtained from various sources of proteins, such as foods and agri-food by-products, via enzymatic hydrolysis and microbial fermentation. Peptides with antioxidant properties exert effective metal ion (Fe2+/Cu2+) chelating activity and lipid peroxidation inhibition, which may lead to notably beneficial effects in promoting human health and food processing. Antimicrobial peptides are small oligo-peptides generally containing from 10 to 100 amino acids, with a net positive charge and an amphipathic structure; they are the most important components of the antibacterial defense of organisms at almost all levels of life—bacteria, fungi, plants, amphibians, insects, birds and mammals—and have been suggested as natural compounds that neutralize the toxicity of reactive oxygen species generated by antibiotics and the stress generated by various exogenous sources. This review discusses what antioxidant and antimicrobial peptides are, their source, production, some bioinformatics tools used for their obtainment, emerging technologies, and health benefits.  相似文献   

3.
4.
Recently, nanomaterials have received increasing attention due to their unique physical and chemical properties, which make them of considerable interest for applications in many fields, such as biotechnology, optics, electronics, and catalysis. The development of nanomaterials has proven fundamental for the development of smart electrochemical sensors to be used in different application fields such, as biomedical, environmental, and food analysis. In fact, they showed high performances in terms of sensitivity and selectivity. In this report, we present a survey of the application of different nanomaterials and nanocomposites with tailored morphological properties as sensing platforms for food analysis. Particular attention has been devoted to the sensors developed with nanomaterials such as carbon-based nanomaterials, metallic nanomaterials, and related nanocomposites. Finally, several examples of sensors for the detection of some analytes present in food and beverages, such as some hydroxycinnamic acids (caffeic acid, chlorogenic acid, and rosmarinic acid), caffeine (CAF), ascorbic acid (AA), and nitrite are reported and evidenced.  相似文献   

5.
Research with cold molecules has developed rapidly in recent years. There is now a variety of established methods for cooling molecules into the millikelvin range. Nevertheless, a focal point of current research is directed toward finding new ways to bring the temperature of molecules even closer to absolute zero. Samples of cold molecules offer not only important applications for high‐resolution spectroscopy, which benefit from the increased interaction time of slow molecules with electromagnetic radiation; they also promise access to an exotic regime of chemical reactivity, in which phenomena such as quantum tunneling and quantum resonances predominate. This review begins with an introduction to the methods by which cold molecules can be prepared, with special emphasis on Stark deceleration and traps. In addition to applications of cold molecules that have already been partially achieved, an important focus of the review concentrates on possible future applications, and both aspects are illustrated with selected examples.  相似文献   

6.
Essential oil (EO), hydrolate, and nondistilled aqueous phase (decoction) obtained from the hydrodistillation of lemongrass byproducts were studied in terms of their potential as food ingredients under a circular economy. The EO (0.21%, dry weight basis) was composed mainly of monoterpenoids (61%), the majority being citral (1.09 g/kg). The minimal inhibitory concentrations (MIC) of lemongrass EO against Escherichia coli, Salmonella enterica, and Staphylococcus aureus, were 617, 1550, and 250 μg/mL, respectively. This effect was dependent on the citral content. Particularly for Gram-negative bacteria, a synergism between citral and the remaining EO compounds enhanced the antimicrobial activity. The polymeric material obtained from the nondistilled aqueous phase was composed of phenolic compounds (25% gallic acid equivalents) and carbohydrates (22%), mainly glucose (66 mol%). This polymeric material showed high antioxidant activity due to bound phenolic compounds, allowing its application as a functional dietary fiber ingredient. Matcha green tea formulations were successfully mixed with lemongrass hydrolate containing 0.21% EO (dry weight basis) with 58% of monoterpenoids, being citral at 0.73 g/kg, minimizing matcha astringency with a citrus flavor and extending the product shelf life. This holistic approach to essential oils’ hydrodistillation of Cymbopogon citratus byproducts allows for valorizing of the essential oil, hydrolate, and decoction for use as food ingredients.  相似文献   

7.
Self-healing polymer composites possess the inherent ability to heal the damage event autonomically or non-autonomically with external intervention. These advanced materials can be commercialized if the challenges and limitations of different self-healing mechanisms are well known and considered. These include capsule-based healing systems, vascular healing systems, and intrinsic healing systems. To date, most of the reviews have studied and reported on different self-healing mechanisms including their response to impact, fatigue, and corrosion tests. This review focuses mostly on extrinsic and intrinsic self-healing polymer composites which have been reported during the past five years by comparing their healing efficiency, advantages, and challenges in the prospect of their future development as well as their possible applications across various industries such as aerospace, automobile, coating, electronics, energy, etc.  相似文献   

8.
Pests and diseases are responsible for most of the losses related to agricultural crops, either in the field or in storage. Moreover, due to indiscriminate use of synthetic pesticides over the years, several issues have come along, such as pest resistance and contamination of important planet sources, such as water, air and soil. Therefore, in order to improve efficiency of crop production and reduce food crisis in a sustainable manner, while preserving consumer’s health, plant-derived pesticides may be a green alternative to synthetic ones. They are cheap, biodegradable, ecofriendly and act by several mechanisms of action in a more specific way, suggesting that they are less of a hazard to humans and the environment. Natural plant products with bioactivity toward insects include several classes of molecules, for example: terpenes, flavonoids, alkaloids, polyphenols, cyanogenic glucosides, quinones, amides, aldehydes, thiophenes, amino acids, saccharides and polyketides (which is not an exhaustive list of insecticidal substances). In general, those compounds have important ecological activities in nature, such as: antifeedant, attractant, nematicide, fungicide, repellent, insecticide, insect growth regulator and allelopathic agents, acting as a promising source for novel pest control agents or biopesticides. However, several factors appear to limit their commercialization. In this critical review, a compilation of plant-derived metabolites, along with their corresponding toxicology and mechanisms of action, will be approached, as well as the different strategies developed in order to meet the required commercial standards through more efficient methods.  相似文献   

9.
Designed peptides derived from the islet amyloid polypeptide (IAPP) cross‐amyloid interaction surface with Aβ (termed interaction surface mimics or ISMs) have been shown to be highly potent inhibitors of Aβ amyloid self‐assembly. However, the molecular mechanism of their function is not well understood. Using solution‐state and solid‐state NMR spectroscopy in combination with ensemble‐averaged dynamics simulations and other biophysical methods including TEM, fluorescence spectroscopy and microscopy, and DLS, we characterize ISM structural preferences and interactions. We find that the ISM peptide R3‐GI is highly dynamic, can adopt a β‐like structure, and oligomerizes into colloid‐like assemblies in a process that is reminiscent of liquid–liquid phase separation (LLPS). Our results suggest that such assemblies yield multivalent surfaces for interactions with Aβ40. Sequestration of substrates into these colloid‐like structures provides a mechanistic basis for ISM function and the design of novel potent anti‐amyloid molecules.  相似文献   

10.
Hydrogen is in limelight as an environmental benign alternative to fossil fuels from few decades. To bring the concept of hydrogen economy from academic labs to real world certain challenges need to be addressed in the areas of hydrogen production, storage, and its use in fuel cells. Crystalline metal-organic frameworks (MOFs) with unprecedented surface areas are considered as potential materials for addressing the challenges in each of these three areas. MOFs combine the diverse chemistry of molecular linkers with their ability to coordinate to metal ions and clusters. The unabated flurry of research using MOFs in the context of hydrogen energy related activities in the past decade demonstrates the versatility of this class of materials. In the present review, we discuss major strategical advances that have taken place in the field of “hydrogen economy and MOFs” and point out issues requiring further attention.  相似文献   

11.
Enterococci, a type of lactic acid bacteria, are widely distributed in various environments and are part of the normal flora in the intestinal tract of humans and animals. Although enterococci have gradually evolved pathogenic strains causing nosocomial infections in recent years, the non-pathogenic strains have still been widely used as probiotics and feed additives. Enterococcus can produce enterocin, which are bacteriocins considered as ribosomal peptides that kill or inhibit the growth of other microorganisms. This paper reviews the classification, synthesis, antibacterial mechanisms and applications of enterocins, and discusses the prospects for future research.  相似文献   

12.
Anthocyanins are naturally occurring phytochemicals that have attracted growing interest from consumers and the food industry due to their multiple biological properties and technological applications. Nevertheless, conventional extraction techniques based on thermal technologies can compromise both the recovery and stability of anthocyanins, reducing their global yield and/or limiting their application in food systems. The current review provides an overview of the main innovative processes (e.g., pulsed electric field, microwave, and ultrasound) used to recover anthocyanins from agri-food waste/by-products and the mechanisms involved in anthocyanin extraction and their impacts on the stability of these compounds. Moreover, trends and perspectives of anthocyanins’ applications in food systems, such as antioxidants, natural colorants, preservatives, and active and smart packaging components, are addressed. Challenges behind anthocyanin implementation in food systems are displayed and potential solutions to overcome these drawbacks are proposed.  相似文献   

13.
Designing of nanomaterials has now become a top-priority research goal with a view to developing specific applications in the biomedical fields. In fact, the recent trends in the literature show that there is a lack of in-depth reviews that specifically highlight the current knowledge based on the design and production of nanomaterials. Considerations of size, shape, surface charge and microstructures are important factors in this regard as they affect the performance of nanoparticles (NPs). These parameters are also found to be dependent on their synthesis methods. The characterisation techniques that have been used for the investigation of these nanomaterials are relatively different in their concepts, sample preparation methods and obtained results. Consequently, this review article aims to carry out an in-depth discussion on the recent trends on nanomaterials for biomedical engineering, with a particular emphasis on the choices of the nanomaterials, preparation methods/instruments and characterisations techniques used for designing of nanomaterials. Key applications of these nanomaterials, such as tissue regeneration, medication delivery and wound healing, are also discussed briefly. Covering this knowledge gap will result in a better understanding of the role of nanomaterial design and subsequent larger-scale applications in terms of both its potential and difficulties.  相似文献   

14.
The pK 2 values for the dissociation of the NH 3 + charge center of the glycyl peptides, e.g., glycyl-D-asparagine, glycyl-DL-serine, glycyl-L-leucine, and glycyl-DL-methionine have been determined at 10 temperatures in the range 5–50°C by measurements of the emf of cells without liquid junction, utilizing hydrogen electrodes and silver–silver bromide electrodes. The thermodynamic quantities, H o, C p o and S o were calculated from the temperature coefficients of the dissociation constants. The pK 2 values at 25°C are 8.268 (glycyl-D-asparagine), 8.277 (glycyl-DL-serine), 8.323 (glycyl-L-leucine), and 8.408 (gly-cyl-DL-methionine). These values show that changes in the substituents on the -carbon atom have very little effect on the dissociation of the NH 3 + , with the possible exception of glycyl-DL-methionine. The suitability of these compounds as buffers in the physiologically important pH range 7–9 is of interest. The thermodynamics of the solute–solvent interaction is interpreted in terms of a mixture model. The peptides chosen for study include both polar and nonpolar substituents.  相似文献   

15.
Due to the emergence of multidrug-resistant pathogens, it is necessary to develop options to fight infections caused by these agents. Lactoferrin (Lf) is a cationic nonheme multifunctional glycoprotein of the innate immune system of mammals that provides numerous benefits. Lf is bacteriostatic and/or bactericidal, can stimulate cell proliferation and differentiation, facilitate iron absorption, improve neural development and cognition, promote bone growth, prevent cancer and exert anti-inflammatory and immunoregulatory effects. Lactoferrin is present in colostrum and milk and is also produced by the secondary granules of polymorphonuclear leukocytes, which store this glycoprotein and release it at sites of infection. Lf is also present in many fluids and exocrine secretions, on the surfaces of the digestive, respiratory and reproductive systems that are commonly exposed to pathogens. Apo-Lf (an iron-free molecule) can be microbiostatic due to its ability to capture ferric iron, blocking the availability of host iron to pathogens. However, apo-Lf is mostly microbicidal via its interaction with the microbial surface, causing membrane damage and altering its permeability function. Lf can inhibit viral entry by binding to cell receptors or viral particles. Lf is also able to counter different important mechanisms evolved by microbial pathogens to infect and invade the host, such as adherence, colonization, invasion, production of biofilms and production of virulence factors such as proteases and toxins. Lf can also cause mitochondrial and caspase-dependent regulated cell death and apoptosis-like in pathogenic yeasts. All of these mechanisms are important targets for treatment with Lf. Holo-Lf (the iron-saturated molecule) can contain up to two ferric ions and can also be microbicidal against some pathogens. On the other hand, lactoferricins (Lfcins) are peptides derived from the N-terminus of Lf that are produced by proteolysis with pepsin under acidic conditions, and they cause similar effects on pathogens to those caused by the parental Lf. Synthetic analog peptides comprising the N-terminus Lf region similarly exhibit potent antimicrobial properties. Importantly, there are no reported pathogens that are resistant to Lf and Lfcins; in addition, Lf and Lfcins have shown a synergistic effect with antimicrobial and antiviral drugs. Due to the Lf properties being microbiostatic, microbicidal, anti-inflammatory and an immune modulator, it represents an excellent natural alternative either alone or as adjuvant in the combat to antibiotic multidrug-resistant bacteria and other pathogens. This review aimed to evaluate the data that appeared in the literature about the effects of Lf and its derived peptides on pathogenic bacteria, protozoa, fungi and viruses and how Lf and Lfcins inhibit the mechanisms developed by these pathogens to cause disease.  相似文献   

16.
石墨烯量子点(GQDs)是一种新型碳基准零维材料,不但具有石墨烯的独特平面结构,同时具备碳点的量子限制效应和边界效应。GQDs具有独特的光学性质、低毒性、高荧光稳定性和高生物相容性,被广泛应用于检测、传感、催化、细胞成像、药物递送和污染治理等领域。GQDs的合成分为自上而下法和自下而上法,前者将大尺寸的石墨烯、石墨、碳材料切割成纳米级的量子点,后者使用不同的前驱体,通过水热法、热裂解法等方法合成石墨烯量子点。柠檬酸(CA)是一种重要的有机酸,室温下是白色结晶状粉末,是自下而上法合成GQDs的一种常用前驱体,近年来有许多关于以CA为前驱体合成不同GQDs的研究,以CA为前驱体合成的GQDs(CA-GQDs)在生物医药、荧光检测、成像等领域均有应用,具有较好的应用前景。对近年来基于CA的合成方法和具体应用进行了总结和回顾,旨在将现有CA-GQDs的相关成果尽可能汇总和展现,以对相关领域研究工作者提供一定参考,并对未来CA-GQDs较有前景的研究方向进行了展望。  相似文献   

17.
Peptides are promising molecular-binding elements and have attracted great interest in novel biosensor development. In this study, a series of peptides derived from odorant-binding proteins (OBPs) were rationally designed for recognition of SARS-CoV-2-related volatile organic compounds (VOCs). Ethanol, nonanal, benzaldehyde, acetic acid, and acetone were selected as representative VOCs in the exhaled breath during the COVID-19 infection. Computational docking and prediction tools were utilized for OBPs peptide characterization and analysis. Multiple parameters, including the docking model, binding affinity, sequence specification, and structural folding, were investigated. The results demonstrated a rational, rapid, and efficient approach for designing breath-borne VOC-recognition peptides, which could further improve the biosensor performance for pioneering COVID-19 screening and many other applications.  相似文献   

18.
Seaweeds have a long history of use as food, as flavouring agents, and find use in traditional folk medicine. Seaweed products range from food, feed, and dietary supplements to pharmaceuticals, and from bioenergy intermediates to materials. At present, 98% of the seaweed required by the seaweed industry is provided by five genera and only ten species. The two brown kelp seaweeds Laminaria digitata, a native Irish species, and Macrocystis pyrifera, a native New Zealand species, are not included in these eleven species, although they have been used as dietary supplements and as animal and fish feed. The properties associated with the polysaccharides and proteins from these two species have resulted in increased interest in them, enabling their use as functional foods. Improvements and optimisations in aquaculture methods and bioproduct extractions are essential to realise the commercial potential of these seaweeds. Recent advances in optimising these processes are outlined in this review, as well as potential future applications of L. digitata and, to a greater extent, M. pyrifera which, to date, has been predominately only wild-harvested. These include bio-refinery processing to produce ingredients for nutricosmetics, functional foods, cosmeceuticals, and bioplastics. Areas that currently limit the commercial potential of these two species are highlighted.  相似文献   

19.
抗菌肽是大多数生物体中均存在的阳离子型短肽,其构成了生物免疫系统的重要部分。抗菌肽具有广谱高效的抗菌性和细胞选择性,其独特的膜破坏杀菌机制不易引起病原体的耐药性突变,有望成为新一代控制病原体的有效"抗生素"。但天然抗菌肽的提取成本高、产率低且周期长,不利于大规模生产推广,所以依托化学合成方法合成抗菌肽及其模拟聚合物应运而生。该方法为抗菌肽的设计及合成提供无限可能。本文介绍了抗菌肽的来源、结构和其作用机理并对现有的抗菌肽合成方法进行综述,阐述了现今抗菌肽及类抗菌肽的研究进展以及抗菌肽组装体的应用,最后对抗菌肽及类抗菌肽的发展前景作了展望,为开发高效、低毒的"新一代"抗生素提供重要信息和策略。  相似文献   

20.
Nanozymes have advantages over natural enzymes, such as facile production on large scale, long storage time, low costs, and high stability in harsh environments. Carbon nanomaterials (CNMs), including fullerenes, carbon nanotubes, graphene, carbon quantum dots, and graphene quantum dots, have become a star family in materials science. As a new class of nanozymes, the catalytic activity of CNMs and their hybrids has been extensively reported. In this Minireview, recent progress of CNMs based artificial enzymes, focusing on those with peroxidase‐like activity, has been summarized. The enzymatic properties, catalytic mechanisms, and novel applications of CNM nanozymes in sensing, therapy, and environmental engineering are discussed in detail. Additionally, we also highlight the remaining challenges and unsolved problems. With the fast development of bionanotechnology, the unique enzymatic properties and advantages of CNM nanozymes have received much attention and will continue to be an active and challenging field for the years to come.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号